【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】

简介: 【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】

7fbaaa78c6e94372bd7fc407a30f2dac.jpg 随着人工智能(AI)的迅猛发展,越来越多的企业和开发者正在积极探索如何将AI融入自己的应用之中,以提升用户体验、优化业务流程或创新商业模式。而 微服务架构,以其灵活、可扩展和可维护的特性,正成为构建现代应用的重要工具。将AI与微服务结合,可以充分利用机器学习模型提供智能化服务,同时借助微服务架构实现模型的灵活部署和扩展。本文将通过一个实战案例,介绍如何利用Spring Boot框架和机器学习技术构建赋能AI的微服务应用,并通过实例和代码进行佐证。

一、Spring Boot与机器学习的结合点

Spring Boot是一个用于简化Spring应用初始搭建以及开发过程的框架,它提供了丰富的功能,使得开发者可以专注于业务逻辑的实现。而机器学习是人工智能的一个重要分支,它通过计算机从数据中学习并做出预测或决策,为应用提供了智能化能力。将这两者结合,可以将机器学习模型封装成微服务,并通过Spring Boot提供的REST API或gRPC等方式提供服务,实现智能化服务的快速开发和部署。


二、实战案例:电商推荐系统微服务

接下来,我们将通过一个基于Spring Boot和机器学习的电商推荐系统微服务来展示如何实现这一结合。


2.1 环境准备

首先,确保你的开发环境已经安装了Java和Maven,并配置好了Spring Boot的开发环境。然后,你需要引入相关的机器学习库,比如TensorFlow或PyTorch的Java绑定。这里我们以TensorFlow为例,你可以通过Maven的pom.xml文件添加相应的依赖。


2.2 创建Spring Boot项目

使用Spring Initializr([https://start.spring.io/)或你喜欢的IDE(如IntelliJ IDEA、Eclipse等)创建一个新的Spring Boot项目。在创建过程中,选择你需要的依赖,比如Web、JPA等。


2.3 引入机器学习模型

假设你已经训练好了一个电商推荐模型,并将其保存为TensorFlow的SavedModel格式。你可以将模型文件放在项目的资源文件夹下,或者在启动时从外部加载。


2.4 创建推荐服务接口

在Spring Boot项目中,创建一个推荐服务的接口,定义提供推荐的方法。

例如:

java

@RestController
@RequestMapping("/api/recommendations")
public class RecommendationController {

    @Autowired
    private RecommendationService recommendationService;

    @GetMapping("/{userId}")
    public List<Product> getRecommendations(@PathVariable String userId) {
        return recommendationService.getRecommendations(userId);
    }
}

2.5 实现推荐服务

接下来,实现推荐服务的业务逻辑。这里你需要使用TensorFlow的Java API来加载和运行你的模型。例如:

java

@Service
public class RecommendationService {

    private static final String MODEL_PATH = "path/to/your/model";
    private static final String INPUT_TENSOR_NAME = "input_tensor";
    private static final String OUTPUT_TENSOR_NAME = "output_tensor";

    private Try<Graph> graph;
    private Try<Session> session;

    @PostConstruct
    public void init() {
        try (GraphBuilder b = new GraphBuilder(Op.createWith(new Graph()))) {
            // 加载模型到图
            Graph g = b.build();
            graph = Success(g);
            session = Success(new Session(g));
        } catch (Exception e) {
            graph = Failure(e);
            session = Failure(e);
        }
    }

    public List<Product> getRecommendations(String userId) {
        // 这里是简化的代码,实际中你需要根据userId构建输入张量,并运行模型得到输出张量
        // 然后将输出张量解析为推荐的产品列表
        // ...
        return new ArrayList<>();
    }
}

2.6 运行和测试

启动Spring Boot应用,并使用HTTP客户端(如curl或Postman)测试你的推荐服务接口。例如,发送GET请求到http://localhost:8080/api/recommendations/{userId},你应该能够收到基于用户ID的推荐产品列表。

三、总结

通过将Spring Boot与机器学习结合,我们可以轻松构建赋能AI的微服务应用。Spring Boot简化了应用的开发和部署过程,而机器学习提供了强大的智能化能力。通过本实战案例的演示,我们展示了如何利用Spring Boot和TensorFlow构建一个简单的电商推荐系统微服务,并通过代码进行了佐证。希望这个例子能够激发你对AI与微服务结合的更多思考和实践。

目录
相关文章
|
1月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
23天前
|
人工智能 Java API
Spring AI 实战|Spring AI入门之DeepSeek调用
本文介绍了Spring AI框架如何帮助Java开发者轻松集成和使用大模型API。文章从Spring AI的初探开始,探讨了其核心能力及应用场景,包括手动与自动发起请求、流式响应实现打字机效果,以及兼容不同AI服务(如DeepSeek、通义千问)的方法。同时,还详细讲解了如何在生产环境中添加监控以优化性能和成本管理。通过Spring AI,开发者可以简化大模型调用流程,降低复杂度,为企业智能应用开发提供强大支持。最后,文章展望了Spring AI在未来AI时代的重要作用,鼓励开发者积极拥抱这一技术变革。
557 71
Spring AI 实战|Spring AI入门之DeepSeek调用
|
1月前
|
人工智能 监控 JavaScript
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
408 39
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
|
16天前
|
人工智能 程序员 应用服务中间件
何谓AI编程建官网实战【01】AI编程企业官网建设实践-以优雅草星云智控为例-优雅草卓伊凡
何谓AI编程建官网实战【01】AI编程企业官网建设实践-以优雅草星云智控为例-优雅草卓伊凡
32 1
何谓AI编程建官网实战【01】AI编程企业官网建设实践-以优雅草星云智控为例-优雅草卓伊凡
|
21天前
|
机器学习/深度学习 传感器 人工智能
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡
50 3
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡
|
23天前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
103 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
25天前
|
机器学习/深度学习 数据采集 人工智能
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
|
17天前
|
人工智能 搜索推荐 算法
深度剖析:AI 建站的现状、局限与未来展望-AI编程建站实战系列预告优雅草卓伊凡
深度剖析:AI 建站的现状、局限与未来展望-AI编程建站实战系列预告优雅草卓伊凡
25 0
深度剖析:AI 建站的现状、局限与未来展望-AI编程建站实战系列预告优雅草卓伊凡
|
27天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
242 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
30天前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
307 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型