使用决策树算法预测隐形眼镜类型

简介: 使用决策树算法预测隐形眼镜类型

谷歌笔记本(可选)

from google.colab import drive
drive.mount("/content/drive")

output

Mounted at /content/drive


编写算法:决策树

from math import log
import operator
 
def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts.keys():
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0
  for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)
  return shannonEnt

这段代码是用于计算给定数据集的香农熵(Shannon Entropy)的Python实现。香农熵在信息论中是一个度量不确定性或信息混乱程度的重要概念,在机器学习领域,特别是在决策树算法中,用于评估特征对于划分数据集纯度的贡献。


1. `calcShannonEnt`函数接收一个名为dataSet的数据集作为输入,该数据集通常是由特征向量构成的列表,每个特征向量最后一个元素为其对应的类别标签。


2. 首先统计数据集中样本的数量:`numEntries = len(dataSet)`。


3. 初始化一个字典`labelCounts`,用于存储各类别标签出现的次数。通过遍历整个数据集,对每一个特征向量(featVec),提取其类别标签(currentLabel),并将其计数加到字典对应键值上。


4. 计算香农熵:初始化`shannonEnt`为0,然后遍历`labelCounts`字典,对于每个类别标签key,计算其概率(通过其出现次数除以总样本数得到),然后用公式 `- prob * log(prob, 2)` 计算其熵值,并累加到`shannonEnt`上。这里的log是以2为底的对数,因为熵的单位通常是比特(bits)。


5. 最后返回计算得出的香农熵值`shannonEnt`。


总结:这个函数的主要目的是衡量给定数据集中各类别的不确定性或分布均匀性,熵值越大表示不确定性越高,越需要进行划分以提高模型的纯度。

def splitDataSet(dataSet, axis, value):
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet
def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1   # 2
  baseEntropy = calcShannonEnt(dataSet)  # 0.9709505944546686
  bestInfoGain = 0
  bestFeature = -1
  for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0
    for value in uniqueVals:
      subDataSet = splitDataSet(dataSet, i, value)
      prob = len(subDataSet) / float(len(dataSet))
      newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if(infoGain > bestInfoGain):
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature

这段代码是用于选择数据集中最佳特征进行划分的函数,通常在决策树构建过程中使用。其主要目的是通过计算信息增益(Information Gain)来确定最优分割特征。


1. numFeatures 计算特征的数量,等于数据集中每个样本向量元素的个数减1(因为最后一个元素通常是类别标签)。


2. 初始化基本熵(baseEntropy),通过调用之前定义的 calcShannonEnt(dataSet) 函数计算整个数据集的香农熵。


3. 初始化最佳信息增益(bestInfoGain)为0,以及最佳特征索引(bestFeature)为-1,分别用于存储找到的最大信息增益和对应的特征编号。


4. 遍历所有特征(i从0到numFeatures-1):


       a. 通过列表推导式提取出当前特征i的所有取值,存入featList。


       b. 将featList中的唯一值转化为一个集合(uniqueVals),这将作为当前特征可能的划分依据。


       c. 对于uniqueVals中的每一个value,利用splitDataSet函数根据特征i和该value划分数据集得到subDataSet。


       d. 计算划分后子数据集的概率(prob),即子数据集大小除以原数据集大小。


       e. 计算划分后的子数据集的香农熵,并乘以对应概率得到加权平均熵(newEntropy)。


       f. 使用公式计算信息增益:infoGain = baseEntropy - newEntropy。


       g. 如果当前信息增益大于已记录的最佳信息增益,则更新bestInfoGain和bestFeature。


5. 循环结束后返回最佳特征索引(bestFeature)。这个特征就是当前能带来最大信息增益的特征,用于下一步决策树节点的划分。

def majorityCnt(classList):
  classCount={}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote] = 0
    classCount[vote] += 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]
def createTree(dataSet, labels):
  classList = [example[-1] for example in dataSet]
  if classList.count(classList[0]) == len(classList):
    return classList[0]
  if len(dataSet[0]) == 1:
    return majorityCnt(classList)
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel:{}}
  subLabels = labels[:]
  del(subLabels[bestFeat])
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
  return myTree

这段代码是用于创建决策树的函数,名为`createTree`。它递归地构建决策树直到满足停止条件。


1. 首先计算数据集classList中最后一个元素(类别标签)的唯一值数量,如果所有样本的类别标签都相同,则说明当前节点下的样本已经足够纯,无需继续划分,直接返回这个唯一的类别标签作为叶子节点的预测结果。


2. 检查是否所有特征已经被用尽(即每个样本只有一个特征),如果是,则返回该节点下出现次数最多的类别标签(通过调用`majorityCnt(classList)`实现)。


3. 使用`chooseBestFeatureToSplit`函数选择最优特征进行划分,并获取其对应的标签名称(bestFeatLabel)。


4. 初始化一个新的字典结构myTree,以表示当前节点以及其子节点。字典的键为最优特征的标签,值为另一个字典,后续将填充各个特征取值对应的子树。


5. 创建一个子标签列表subLabels,它是原标签列表labels的一个副本,然后删除最优特征对应的标签,这样在构建子节点时不会重复考虑此特征。


6. 提取数据集中最优特征的所有取值并转化为一个集合uniqueVals。


7. 遍历uniqueVals中的每一个特征取值value:

  a. 调用`splitDataSet(dataSet, bestFeat, value)`对数据集进行划分,得到该特征取值对应的新子数据集。

  b. 以最优特征的取值value作为键,递归调用`createTree`生成对应的子树,并将其添加到myTree[bestFeatLabel]中。


8. 当所有子树构造完成后,返回整个决策树结构myTree。整个过程按照信息增益最大原则自顶向下构建决策树,直至达到终止条件。


准备数据:拆分数据集

fr = open('/content/drive/MyDrive/MachineLearning/机器学习/决策树/使用决策树预测隐形眼镜类型/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses, lensesLabels)
lensesTree, lensesLabels
output

({'tearRate': {'normal': {'astigmatic': {'no': {'age': {'presbyopic': {'prescript': {'myope': 'no lenses',
         'hyper': 'soft'}},
       'pre': 'soft',
       'young': 'soft'}},
     'yes': {'prescript': {'myope': 'hard',
       'hyper': {'age': {'presbyopic': 'no lenses',
         'pre': 'no lenses',
         'young': 'hard'}}}}}},
   'reduced': 'no lenses'}},
 ['age', 'prescript', 'astigmatic', 'tearRate'])

测试算法:构造注解树

import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
  createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                          xytext=centerPt, textcoords='axes fraction',
                          va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
  numLeafs = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__ == 'dict':
      numLeafs += getNumLeafs(secondDict[key])
    else:
      numLeafs += 1
  return numLeafs
def getTreeDepth(myTree):
  maxDepth = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      thisDepth = 1 + getTreeDepth(secondDict[key])
    else:
      thisDepth = 1
    if thisDepth > maxDepth:
      maxDepth = thisDepth
  return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            plotTree(secondDict[key],cntrPt,str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()
createPlot(lensesTree)

output

使用算法:预测隐形眼镜类型

def classify(inputTree, featLabels, testVec):
  firstStr = list(inputTree.keys())[0]
  secondDict = inputTree[firstStr]
  featIndex = featLabels.index(firstStr)
  for key in secondDict.keys():
    if testVec[featIndex] == key:
      if type(secondDict[key]).__name__ == 'dict':
      classLabel = classify(secondDict[key], featLabels, testVec)
    else:
      classLabel = secondDict[key]
  return classLabel
classify(lensesTree, lensesLabels, ['pre', 'myope', 'yes', 'normal'])

output

'hard'

目录
相关文章
|
10天前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
20天前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
65 4
|
1月前
|
算法 安全 机器人
【路径规划】基于遗传算法结合粒子群算法求解机器人在复杂不同类型下的路径规划研究(Matlab代码实现)
【路径规划】基于遗传算法结合粒子群算法求解机器人在复杂不同类型下的路径规划研究(Matlab代码实现)
|
3月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
103 2
|
5月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
5月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
166 17
|
5月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
141 7
|
4月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
|
7月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
225 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
175 3
 算法系列之数据结构-Huffman树

热门文章

最新文章