【Python机器学习专栏】层次聚类算法的原理与应用

简介: 【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。

在数据挖掘和机器学习领域,聚类是一种探索性数据分析的常用技术,旨在将数据集中的样本划分为若干个不相交的子集,每个子集称为一个“簇”,使得同一个簇内的样本之间相似度较高,而不同簇的样本相似度较低。层次聚类算法作为一种重要的聚类分析方法,因其不需要预先指定簇的数量,且能够生成数据集的层次结构,被广泛应用于市场细分、社交网络分析、生物信息学等领域。本文将探讨层次聚类算法的基本原理、优缺点以及如何在Python中实现层次聚类。

层次聚类算法的基本原理

层次聚类算法通过一种逐步的方式,将数据点合并成一个大的簇或者从一个大簇分裂成小簇。根据合并或分裂的顺序,层次聚类可以分为凝聚(自下而上)和分裂(自上而下)两种类型。

凝聚层次聚类

凝聚层次聚类是最常用的类型,它从将每个数据点视为一个单独的簇开始,然后按照一定的准则逐步合并最接近的两个簇,直到所有的数据点都聚集在一个大的簇中,或者达到某个终止条件。常用的合并准则包括最短距离(单链接)、最长距离(全链接)、群集平均(组平均)和Ward方法等。

分裂层次聚类

分裂层次聚类则相反,它从一个包含所有数据点的单一大簇开始,然后逐步分裂成更小的簇,直到每个数据点都是一个独立的簇,或者达到某个终止条件。

层次聚类算法的优缺点

优点

  • 不需要预先指定簇的数量:层次聚类可以自动确定形成多少个簇,这对于探索性分析非常有用。
  • 形成层次结构:层次聚类提供了数据的层次结构表示,这有助于更好地理解数据的组织结构。
  • 适用于小型到中型数据集:层次聚类通常用于较小的数据集,因为它的时间复杂度较高。

缺点

  • 计算成本高:层次聚类的时间复杂度通常较高,对于大型数据集可能不太适用。
  • 合并或分裂点不可逆:一旦一个步骤完成,就不能撤销,这可能导致错误的决策。
  • 对异常值敏感:层次聚类对于异常值或噪声数据比较敏感,可能会导致不理想的聚类结果。

Python实现

在Python中,我们可以使用scipy库中的hierarchy模块来实现层次聚类算法。

import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram
from matplotlib import pyplot as plt

# 生成示例数据
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])

# 使用凝聚层次聚类
Z = linkage(X, 'single')

# 绘制树状图
plt.figure(figsize=(10, 7))
dendrogram(Z)
plt.title('Dendrogram')
plt.xlabel('Sample index')
plt.ylabel('Distance')
plt.show()

结语

层次聚类算法提供了一种独特的视角来探索数据的结构和模式,它不需要预先指定簇的数量,并且能够生成数据的层次结构。在Python中,我们可以利用scipy库轻松实现层次聚类,并通过树状图直观地展示聚类过程。尽管层次聚类在某些情况下可能受到计算成本和对异常值敏感性的限制,但它仍然是一个在各种领域中都有广泛应用价值的强大工具。通过适当的预处理和参数调整,我们可以最大限度地发挥层次聚类的潜力,从而更好地理解和解释数据。

相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
53 14
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
216 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码

热门文章

最新文章

推荐镜像

更多