【Python机器学习专栏】层次聚类算法的原理与应用

简介: 【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。

在数据挖掘和机器学习领域,聚类是一种探索性数据分析的常用技术,旨在将数据集中的样本划分为若干个不相交的子集,每个子集称为一个“簇”,使得同一个簇内的样本之间相似度较高,而不同簇的样本相似度较低。层次聚类算法作为一种重要的聚类分析方法,因其不需要预先指定簇的数量,且能够生成数据集的层次结构,被广泛应用于市场细分、社交网络分析、生物信息学等领域。本文将探讨层次聚类算法的基本原理、优缺点以及如何在Python中实现层次聚类。

层次聚类算法的基本原理

层次聚类算法通过一种逐步的方式,将数据点合并成一个大的簇或者从一个大簇分裂成小簇。根据合并或分裂的顺序,层次聚类可以分为凝聚(自下而上)和分裂(自上而下)两种类型。

凝聚层次聚类

凝聚层次聚类是最常用的类型,它从将每个数据点视为一个单独的簇开始,然后按照一定的准则逐步合并最接近的两个簇,直到所有的数据点都聚集在一个大的簇中,或者达到某个终止条件。常用的合并准则包括最短距离(单链接)、最长距离(全链接)、群集平均(组平均)和Ward方法等。

分裂层次聚类

分裂层次聚类则相反,它从一个包含所有数据点的单一大簇开始,然后逐步分裂成更小的簇,直到每个数据点都是一个独立的簇,或者达到某个终止条件。

层次聚类算法的优缺点

优点

  • 不需要预先指定簇的数量:层次聚类可以自动确定形成多少个簇,这对于探索性分析非常有用。
  • 形成层次结构:层次聚类提供了数据的层次结构表示,这有助于更好地理解数据的组织结构。
  • 适用于小型到中型数据集:层次聚类通常用于较小的数据集,因为它的时间复杂度较高。

缺点

  • 计算成本高:层次聚类的时间复杂度通常较高,对于大型数据集可能不太适用。
  • 合并或分裂点不可逆:一旦一个步骤完成,就不能撤销,这可能导致错误的决策。
  • 对异常值敏感:层次聚类对于异常值或噪声数据比较敏感,可能会导致不理想的聚类结果。

Python实现

在Python中,我们可以使用scipy库中的hierarchy模块来实现层次聚类算法。

import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram
from matplotlib import pyplot as plt

# 生成示例数据
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])

# 使用凝聚层次聚类
Z = linkage(X, 'single')

# 绘制树状图
plt.figure(figsize=(10, 7))
dendrogram(Z)
plt.title('Dendrogram')
plt.xlabel('Sample index')
plt.ylabel('Distance')
plt.show()

结语

层次聚类算法提供了一种独特的视角来探索数据的结构和模式,它不需要预先指定簇的数量,并且能够生成数据的层次结构。在Python中,我们可以利用scipy库轻松实现层次聚类,并通过树状图直观地展示聚类过程。尽管层次聚类在某些情况下可能受到计算成本和对异常值敏感性的限制,但它仍然是一个在各种领域中都有广泛应用价值的强大工具。通过适当的预处理和参数调整,我们可以最大限度地发挥层次聚类的潜力,从而更好地理解和解释数据。

相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
220 55
|
9天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
31 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
8天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
52 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
6天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
11天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
42 5
|
20天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
31 5
|
11天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
46 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
124 4
|
18天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2