算法金 | K-均值、层次、DBSCAN聚类方法解析

简介: **摘要:**这篇文章介绍了聚类分析的基本概念和几种主要的聚类算法。聚类是无监督学习中用于发现数据内在结构的技术,常用于市场分析、图像分割等场景。K-均值是一种基于划分的算法,简单高效但易受初始值影响;层次聚类包括凝聚和分裂方式,形成层次结构但计算复杂;DBSCAN基于密度,能处理任意形状的簇,但参数选择敏感。文章还讨论了这些算法的优缺点和适用场景,并提供了相关资源链接和Python实现。

\

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

接微*公号往期文章:10 种顶流聚类算法,附 Python 实现

聚类分析概述

聚类分析的定义与意义

聚类分析(Clustering Analysis)是一种将数据对象分成多个簇(Cluster)的技术,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较大的差异性。这种方法在无监督学习(Unsupervised Learning)中广泛应用,常用于数据预处理、模式识别、图像处理和市场分析等领域

通过聚类分析,可以有效地发现数据中的结构和模式,为进一步的数据分析和挖掘提供基础。例如,在市场分析中,聚类分析可以帮助企业将客户群体进行细分,从而制定更有针对性的营销策略

常见聚类算法概览

聚类算法种类繁多,常见的主要有以下几种:

  • K-均值(K-Means):一种基于划分的聚类方法,通过迭代优化目标函数将数据分为K个簇。它具有计算简单、效率高等优点,但对初始值敏感,容易陷入局部最优
  • 层次聚类(Hierarchical Clustering):一种基于层次结构的聚类方法,包括凝聚式和分裂式两种。凝聚式层次聚类从每个对象开始逐步合并,分裂式层次聚类从整个数据集开始逐步分裂。它可以生成树状结构(树状图),但计算复杂度较高
  • DBSCAN(Density-Based Spatial Clustering of Applications with Noise):一种基于密度的聚类方法,通过定义核心点、边界点和噪声点来识别簇。它能有效处理噪声和发现任意形状的簇,但对参数选择较为敏感

聚类分析在数据科学中的应用

聚类分析在数据科学中有广泛的应用,以下是一些典型场景:

  • 客户细分:通过对客户进行聚类分析,企业可以将客户分成不同的群体,从而制定更加精准的营销策略
  • 图像分割:在图像处理领域,聚类分析可以用于图像分割,将图像分成具有相似像素特征的区域
  • 异常检测:聚类分析可以帮助识别数据中的异常点,这在金融欺诈检测、网络入侵检测等方面有重要应用
  • 文本聚类:在自然语言处理领域,聚类分析可以用于文本聚类,将具有相似主题的文档分在一起,方便后续的信息检索和推荐系统

更多内容,见算法知识直达星球:https://t.zsxq.com/ckSu3

K-均值聚类方法

定义与基本原理

K-均值(K-Means)是一种常见的划分式聚类算法,其目标是将数据集分成 ( K ) 个簇,使得每个簇内的数据点与该簇的中心点(质心)之间的距离平方和最小。该算法的基本原理是通过迭代优化,逐步调整簇中心位置,直到簇中心不再发生变化或达到预设的迭代次数

算法步骤

K-均值算法的具体步骤如下:

  1. 随机选择 ( K ) 个初始质心
  2. 将每个数据点分配到最近的质心所在的簇
  3. 计算每个簇的质心,即该簇中所有数据点的平均值
  4. 检查质心是否发生变化,若发生变化,则重复步骤2和3,直到质心不再变化或达到预设的迭代次数

K值选择与初始中心问题

K值选择是K-均值聚类中的一个关键问题。通常可以通过肘部法则(Elbow Method)来选择合适的 ( K ) 值。肘部法则通过绘制不同 ( K ) 值对应的聚类误差平方和(SSE),选择拐点处的 ( K ) 值

初始中心的选择对K-均值算法的收敛速度和聚类效果有重要影响。常用的改进方法是K-means++,它通过一种概率分布方法选择初始质心,能有效提高算法性能

优缺点分析

优点:

  • 算法简单,计算效率高,适用于大规模数据集
  • 易于实现和理解

缺点:

  • 对初始质心敏感,可能陷入局部最优
  • 需要预先指定 ( K ) 值
  • 不能处理非凸形状的簇和具有不同大小的簇
  • 对噪声和异常值敏感

适用场景及实例

K-均值聚类适用于以下场景:

  • 数据集规模较大,且簇的形状接近凸形
  • 需要快速获取聚类结果,用于初步数据分析
  • 希望对簇进行简单的解释和可视化

更多内容,见微*公号往期文章:再见!!!K-means

层次聚类方法

定义与基本原理

层次聚类(Hierarchical Clustering)是一种基于层次结构的聚类方法。它通过构建树状的簇结构,逐层合并或分裂数据点,形成一个层次化的簇结构。层次聚类主要有两种类型:凝聚式(Agglomerative)和分裂式(Divisive)。

  • 凝聚式聚类:从每个数据点开始,将最近的两个簇逐步合并,直到所有数据点都被合并到一个簇中。
  • 分裂式聚类:从整个数据集开始,将数据点逐步分裂成更小的簇,直到每个数据点都成为一个单独的簇。

算法步骤

以凝聚式层次聚类为例,算法步骤如下:

  1. 初始化:将每个数据点作为一个单独的簇
  2. 计算簇之间的相似度矩阵
  3. 合并最相似的两个簇,更新相似度矩阵
  4. 重复步骤3,直到所有数据点合并到一个簇中

分裂式与凝聚式聚类

  • 分裂式聚类:从整个数据集开始,通过递归地分裂数据集,形成树状结构。
  • 凝聚式聚类:从每个数据点开始,通过递归地合并最近的簇,形成树状结构。

两者的主要区别在于聚类过程的方向,分裂式自顶向下,凝聚式自底向上。

优缺点分析

优点:

  • 无需预先指定簇数 ( K )
  • 能够生成树状结构(树状图),方便观察不同层次的聚类结果
  • 对任意形状的簇有较好的适应性

缺点:

  • 计算复杂度高,尤其是大规模数据集
  • 对噪声和异常值敏感
  • 聚类结果不可逆,一旦合并或分裂无法撤销

适用场景及实例

层次聚类适用于以下场景:

  • 需要观察不同层次的聚类结果
  • 数据集规模较小,计算复杂度可接受
  • 希望获得更直观的聚类结构

抱个拳,送个礼

点击 ↑ 领取

DBSCAN聚类方法

定义与基本原理

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法,通过识别数据点的密度连接区域来形成簇。DBSCAN不需要预先指定簇的数量,能够识别任意形状的簇,并且对噪声和异常点有较好的处理能力

DBSCAN的基本原理是定义两个参数:( \varepsilon ) (Epsilon,邻域半径)和 ( \text{minPts} ) (最小点数),以确定簇的密度。数据点分为三类:

  • 核心点(Core Point):在其 ( \varepsilon ) 邻域内包含至少 ( \text{minPts} ) 个点的点
  • 边界点(Border Point):在其 ( \varepsilon ) 邻域内包含少于 ( \text{minPts} ) 个点,但在核心点邻域内的点
  • 噪声点(Noise Point):既不是核心点,也不是边界点的点

算法步骤

DBSCAN 算法的具体步骤如下:

  1. 随机选择一个未访问的数据点
  2. 检查该点的 ( \varepsilon ) 邻域,如果邻域内的数据点数量大于等于 ( \text{minPts} ),则将该点标记为核心点,并将邻域内的所有点加入同一簇
  3. 对邻域内的点进行递归扩展,直到所有核心点的邻域都被访问
  4. 对所有未标记的点,如果其属于任何一个核心点的邻域,则标记为边界点;否则,标记为噪声点
  5. 重复上述步骤,直到所有点都被访问

核心点、边界点与噪声点

  • 核心点:邻域内包含至少 ( \text{minPts} ) 个点
  • 边界点:邻域内少于 ( \text{minPts} ) 个点,但在核心点邻域内
  • 噪声点:既不是核心点,也不是边界点的点

优缺点分析

优点:

  • 无需预先指定簇数 ( K )
  • 能处理任意形状的簇
  • 对噪声和异常点有较好的处理能力

缺点:

  • 对参数 ( \varepsilon ) 和 ( \text{minPts} ) 较为敏感
  • 计算复杂度较高,不适合大规模数据集

适用场景及实例

DBSCAN 聚类适用于以下场景:

  • 数据集具有任意形状的簇
  • 存在噪声和异常点,需要识别并处理
  • 希望在不预先指定簇数的情况下进行聚类

[ 抱个拳,总个结 ]

聚类方法比较与应用

三种聚类方法的比较

在前面章节中,我们详细介绍了K-均值、层次聚类和DBSCAN这三种聚类方法。下面将从多个维度对这三种方法进行比较。

如何选择适合的聚类方法

在实际应用中,选择适合的聚类方法需要考虑以下因素:

  1. 数据集规模:对于大规模数据集,优先选择计算复杂度较低的方法,如K-均值。
  2. 簇的形状:如果数据中的簇形状不规则或具有不同的密度,优先选择DBSCAN或层次聚类。
  3. 噪声和异常点:如果数据集中存在较多噪声和异常点,DBSCAN是较好的选择,因为它能够有效处理噪声。
  4. 计算资源:层次聚类的计算复杂度较高,适用于小规模数据集。在计算资源有限的情况下,可以选择K-均值。
  5. 对簇数的预知:如果不能预先确定簇的数量,可以选择层次聚类或DBSCAN。

通过以上内容,我们对K-均值、层次聚类和DBSCAN这三种聚类方法进行了解析,并比较了它们的优缺点和适用场景。希望这些内容能帮助大侠们在实际数据分析中选择合适的聚类方法,提高数据处理和分析的效果。

更多内容见微*公号往期文章:10 种顶流聚类算法,附 Python 实现

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵

内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

基础还是很重要的

能一步一步往前走是很幸福的

毕竟,不确定是常态

算法知识直达星球:https://t.zsxq.com/ckSu3

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
245 0
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
机器学习/深度学习 算法 物联网
基于遗传方法的动态多目标优化算法
基于遗传方法的动态多目标优化算法
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
1380 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
5月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
214 6
|
5月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
671 1
|
5月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
404 1
贪心算法:部分背包问题深度解析
|
5月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
465 0
|
5月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
5月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率

推荐镜像

更多
  • DNS