【Python机器学习专栏】关联规则学习:Apriori算法详解

简介: 【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。

在数据分析和数据挖掘中,关联规则学习是一种非常重要的技术,它旨在从大型数据集中发现变量之间的关系。关联规则学习的最典型应用场景就是“购物篮分析”,通过了解哪些商品经常一起被购买,零售商可以制定更有效的销售策略。Apriori算法是关联规则学习中最常用的一种算法,本文将对Apriori算法进行详细的介绍,并通过Python实现该算法。

一、关联规则学习概述

关联规则学习是一种在大型数据集中寻找项集之间有趣关系的方法。一个关联规则可以表示为X -> Y,其中X和Y是不相交的项集,即X ∩ Y = ∅。关联规则学习的主要目标是找出支持度和置信度均满足一定阈值的强关联规则。

支持度(Support):表示项集{X, Y}在数据集中出现的频率,记作P(X, Y)。
置信度(Confidence):表示在出现项集X的条件下,项集Y也出现的概率,记作P(Y|X)。
二、Apriori算法原理

Apriori算法是一种基于候选项集生成和测试的关联规则学习算法。它利用了两个重要的性质来减少候选项集的数量:

如果一个项集是频繁的,则它的所有子集也一定是频繁的。
如果一个项集是非频繁的,则它的所有超集也一定是非频繁的。
基于这两个性质,Apriori算法通过迭代的方式生成候选项集,并计算每个候选项集的支持度,从而找出所有频繁的项集。在找到频繁的项集后,Apriori算法再从中提取出满足置信度阈值的关联规则。

三、Apriori算法步骤

数据准备:将数据集转换为适合Apriori算法处理的格式,通常是将数据集转换为布尔型矩阵,其中每一行代表一个事务,每一列代表一个项。

计算频繁1-项集:遍历数据集中的每一项,统计每项的出现次数,得到频繁1-项集列表L1。

迭代生成频繁k-项集(k > 1):

生成候选项集:根据L(k-1)和Apriori性质,生成候选k-项集列表Ck。
计算候选项集的支持度:遍历数据集中的每一个事务,统计Ck中每个候选项集的出现次数,从而计算支持度。
生成频繁k-项集:根据支持度阈值,从Ck中筛选出频繁的k-项集,形成列表Lk。
提取关联规则:从频繁项集中提取出满足置信度阈值的关联规则。

四、Python实现Apriori算法

在Python中,我们可以使用mlxtend库来实现Apriori算法。下面是一个简单的示例:

python
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

示例数据集(购物篮数据)

dataset = [['牛奶', '面包', '黄油'],
['面包', '黄油', '尿布'],
['牛奶', '尿布', '啤酒', '鸡蛋'],
['面包', '牛奶', '尿布', '啤酒'],
['面包', '牛奶', '尿布', '鸡蛋'],
['面包', '黄油', '尿布', '啤酒'],
['面包', '黄油', '尿布', '可乐']]

将数据集转换为布尔型矩阵

def list_to_onehot(lst, vocabulary):
return [1 if word in lst else 0 for word in vocabulary]

合并所有事务形成词汇表

vocabulary = set([item for transaction in dataset for item in transaction])
transactions = [[list_to_onehot(transaction, vocabulary)] for transaction in dataset]

将布尔型矩阵转换为DataFrame

df = pd.DataFrame(transactions, columns=vocabulary)

计算频繁项集(设定支持度阈值为0.2)

frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)

提取关联规则(设定置信度阈值为0.7)

rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

打印关联规则

print(rules[['antecedents', 'consequents', 'support', 'confidence']])
在上面的代码中,我们首先定义了一个示例数据集,然后将其转换为布尔型矩阵。接着,我们使用mlxtend库中的

相关文章
|
24天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
37 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
29 2
|
15天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
32 1
|
15天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
39 1
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
21天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
26 3
|
24天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
24天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
24天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
下一篇
无影云桌面