YOLO的版本有哪些,以及功能差异?

简介: YOLO的版本有哪些,以及功能差异?

YOLO(You Only Look Once)是一个流行的目标检测算法系列,自2016年以来已经发展出多个版本,每个版本都在性能、速度和准确性上有所改进。以下是YOLO的主要版本及其功能差异的概述:


1. YOLOv1:提出了一个统一的模型,可以在单次传递中直接从完整图像预测边界框和类别概率。


2. YOLOv2(也称为Darknet-19):通过使用批量归一化、多尺度锚定框以及其他优化,对原始版本进行了改进。


3. YOLOv3:引入了Darknet-53作为新的特征提取器,并添加了多尺度预测,改进了对小物体的检测。


4. YOLOv4:结合了其他对象检测器和分割模型的想法,在保持快速推理的同时提高准确性。


5. YOLOv5:在PyTorch中完全重写了YOLOv4,并引入了CSPDarknet53等新特性,优化了性能和易用性。


6. YOLOv6:继续优化架构和训练过程,引入了无锚点的检测器和新的损失函数等创新。


7. YOLOv7:相较于YOLOv5,在参数量上有所减少,特别是YOLOv7-tiny版本,致力于提高推理速度。


8. YOLOv8:在准确性方面胜过YOLOv5,特别是在检测小物体方面表现出色,并解决了YOLOv5的一些限制。


9. YOLOv9:引入了通用高效层聚合网络(GELAN)和可编程梯度信息(PGI),专注于提高效率,以便在更广泛的设备上实现实时性能。


10. PP-YOLO:并非YOLO主线版本,但值得一提,它使用ResNet50-vd作为骨干网,并引入了多项优化,如DropBlock、IoU预测分支等,以提高性能。


11. Scaled-YOLOv4:提供了扩大和缩小的技术,以适应不同的计算能力和速度需求。


12. YOLOX:以YOLOv3为起点,引入了无锚结构、多阳性、解耦头等改进。


13. YOLOR:采用了多任务学习方法,旨在为各种任务创建一个单一的模型。


14. PP-YOLOE:使用了无锚的架构,并引入了高效任务排列头(ET-head)和任务对齐学习(TAL)。


       每个版本都根据当时的技术需求和挑战进行了特定的优化。例如,YOLOv3引入了多尺度预测来改善对小目标的检测,而YOLOv5则完全重写,使用了PyTorch框架,提高了模型的可用性和性能。YOLOv9则进一步推动了目标检测的效率和性能,使其更适合在资源受限的设备上运行。随着计算机视觉和深度学习领域的不断发展,YOLO系列仍在持续进化中。

相关文章
|
PyTorch Go 算法框架/工具
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
【YOLOv8 注意事项】 1. YOLOv8 的官方仓库和代码已上线,文档教程网址也刚刚更新。 2. YOLOv8 代码集成在 ultralytics 项目中,目前看不会再单独创建叫做 YOLOv8 的项目。 3. YOLOv8 即将有论文了!要知道 YOLOv5 自从 2020 年发布以来,一直是没有论文的。而 YOLOv8(YOLOv5团队)这次首次承认将先发布 arXiv 版本的论文(目前还在火速撰写中)。
1707 0
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
|
1月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
395 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
6月前
|
机器学习/深度学习 计算机视觉 知识图谱
【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码)
MobileViT是针对移动设备的轻量级视觉Transformer网络,结合CNN的局部特征、Transformer的全局注意力和ViT的表示学习。在ImageNet-1k上,它以600万参数实现78.4%的top-1准确率,超越MobileNetv3和DeiT。MobileViT不仅适用于图像分类,还在目标检测等任务中表现出色,且优化简单,代码已开源。YOLOv8引入了MobileViT块,整合卷积和Transformer结构,提升模型性能。更多详情可参考相关专栏和链接。
|
6月前
|
机器学习/深度学习 存储 测试技术
【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md
YOLO目标检测专栏探讨了卷积神经网络的创新改进,如Ghost模块,它通过低成本运算生成更多特征图,降低资源消耗,适用于嵌入式设备。GhostNet利用Ghost模块实现轻量级架构,性能超越MobileNetV3。此外,文章还介绍了SegNeXt,一个高效卷积注意力网络,提升语义分割性能,参数少但效果优于EfficientNet-L2。专栏提供YOLO相关基础解析、改进方法和实战案例。
|
5月前
|
测试技术 计算机视觉
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考
|
6月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv3模型在不同硬件平台上的性能表现有何差异?
YOLOv3模型在不同硬件平台上的性能表现有何差异?
|
6月前
|
机器学习/深度学习 人工智能 监控
2、【KV260开发】yolov4模型训练、量化、编译、部署
2、【KV260开发】yolov4模型训练、量化、编译、部署
115 0
|
机器学习/深度学习 缓存 算法
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(一)
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(一)
390 0
|
tengine 数据可视化 API
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(二)
YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(二)
429 0
|
机器学习/深度学习 算法框架/工具 计算机视觉
又改ResNet | 重新思考ResNet:采用高阶方案的改进堆叠策略(附论文下载)(一)
又改ResNet | 重新思考ResNet:采用高阶方案的改进堆叠策略(附论文下载)(一)
296 0