【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

简介: YOLO目标检测专栏探讨了卷积神经网络的创新改进,如Ghost模块,它通过低成本运算生成更多特征图,降低资源消耗,适用于嵌入式设备。GhostNet利用Ghost模块实现轻量级架构,性能超越MobileNetV3。此外,文章还介绍了SegNeXt,一个高效卷积注意力网络,提升语义分割性能,参数少但效果优于EfficientNet-L2。专栏提供YOLO相关基础解析、改进方法和实战案例。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自## 摘要

在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一系列低成本的线性变换来生成许多能够充分揭示内在特征信息的幽灵特征图。所提出的Ghost模块可以作为一个即插即用的组件来升级现有的卷积神经网络。设计了Ghost瓶颈来堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。在基准测试上进行的实验表明,所提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代品,而我们的GhostNet在相似的计算成本上可以实现比MobileNetV3更高的识别性能(例如,ImageNet ILSVRC-2012分类数据集上的75.7%的top-1准确率)。

创新点

GhostNet的创新点主要包括:

  1. Ghost模块: 提出一种新的Ghost模块,通过低成本操作生成更多的特征图。该模块首先使用一部分原始特征图,然后通过应用一系列简单的线性变换(廉价操作)生成更多的特征图(称为Ghost特征图),这些特征图能够充分揭示原始特征中的信息。
  2. 高效性: 通过减少所需的参数和计算复杂度,Ghost模块显著降低了卷积神经网络的资源消耗。这使得GhostNet特别适合在资源受限的嵌入式设备上部署。
  3. 可插拔组件: Ghost模块设计为一个即插即用的组件,可以轻松集成到现有的卷积神经网络中,以提高其效率和性能。
  4. Ghost Bottlenecks: 设计了特殊的Ghost瓶颈结构来堆叠Ghost模块,进一步优化网络架构,提高了网络的性能和效率。
  5. 轻量级GhostNet架构: 在Ghost模块的基础上构建了轻量级的GhostNet网络,该网络通过替换传统的卷积层来降低计算成本,同时保持或超越现有轻量级模型的性能。

这些创新点共同使GhostNet成为一个高效、轻量级且性能卓越的神经网络架构,特别适合在计算和存储资源有限的设备上进行高性能计算视觉任务。

摘要

在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一系列低成本的线性变换来生成许多能够充分揭示内在特征信息的幽灵特征图。所提出的Ghost模块可以作为一个即插即用的组件来升级现有的卷积神经网络。设计了Ghost瓶颈来堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。在基准测试上进行的实验表明,所提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代品,而我们的GhostNet在相似的计算成本上可以实现比MobileNetV3更高的识别性能(例如,ImageNet ILSVRC-2012分类数据集上的75.7%的top-1准确率)。

创新点

GhostNet的创新点主要包括:

  1. Ghost模块: 提出一种新的Ghost模块,通过低成本操作生成更多的特征图。该模块首先使用一部分原始特征图,然后通过应用一系列简单的线性变换(廉价操作)生成更多的特征图(称为Ghost特征图),这些特征图能够充分揭示原始特征中的信息。
  2. 高效性: 通过减少所需的参数和计算复杂度,Ghost模块显著降低了卷积神经网络的资源消耗。这使得GhostNet特别适合在资源受限的嵌入式设备上部署。
  3. 可插拔组件: Ghost模块设计为一个即插即用的组件,可以轻松集成到现有的卷积神经网络中,以提高其效率和性能。
  4. Ghost Bottlenecks: 设计了特殊的Ghost瓶颈结构来堆叠Ghost模块,进一步优化网络架构,提高了网络的性能和效率。
  5. 轻量级GhostNet架构: 在Ghost模块的基础上构建了轻量级的GhostNet网络,该网络通过替换传统的卷积层来降低计算成本,同时保持或超越现有轻量级模型的性能。

这些创新点共同使GhostNet成为一个高效、轻量级且性能卓越的神经网络架构,特别适合在计算和存储资源有限的设备上进行高性能计算视觉任务。

注意力在编码空间信息方面的效率而在语义分割领域占据主导地位。在本文中,我们展示了卷积注意力是一种比变换器中的自注意力机制更高效和有效的编码上下文信息的方式。通过重新审视成功的分割模型所拥有的特征,我们发现了几个关键组件,这些组件导致了分割模型性能的提升。这激励我们设计了一种新颖的卷积注意力网络,该网络使用廉价的卷积操作。没有任何花哨的技巧,我们的SegNeXt在包括ADE20K、Cityscapes、COCO-Stuff、Pascal VOC、Pascal Context和iSAID在内的流行基准测试上,显著提高了先前最先进方法的性能。值得注意的是,SegNeXt超越了EfficientNet-L2 w/ NAS-FPN,在Pascal VOC 2012测试排行榜上仅使用1/10的参数就达到了90.6%的mIoU。平均而言,与最先进的方法相比,SegNeXt在ADE20K数据集上的mIoU提高了约2.0%,同时计算量相同或更少。

创新点

基本原理

MSCA 主要由三个部分组成:(1)一个深度卷积用于聚 合局部信息;(2)多分支深度卷积用于捕获多尺度上下文信息;(3)一个 1 × 1 逐点卷积用于模拟特征中不同通道之间的关系。1 × 1 逐点卷积的输出被直接用 作卷积注意力的权重,以重新权衡 MSCA 的输入。

image-20240206143511961

MSCA 可以写成 如下形式:其中 F 代表输入特征,Att 和 Out 分别为注意力权重和输出,⊗ 表示逐元素的矩 阵乘法运算,DW­Conv 表示深度卷积,Scalei (i ∈ {0, 1, 2, 3}) 表示上图右边侧图中的第 i 个分支,Scale0 为残差连接。遵循[130],在 MSCA 的每个分支中,SegNeXt 使用两个深度条带卷积来近似模拟大卷积核的深度卷积。每个分支的卷积核大 小分别被设定为 7、11 和 21。 选择深度条带卷积主要考虑到以下两方面原 因:一方面,相较于普通卷积,条带卷积更加轻量化。为了模拟核大小为 7 × 7 的标准二维卷积,只需使用一对 7 × 1 和 1 × 7 的条带卷积。另一方面,在实际 的分割场景中存在一些条状物体,例如人和电线杆。因此,条状卷积可以作为 标准网格状的卷积的补充,有助于提取条状特征。

yolov8 引入

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136151800

相关文章
|
5月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
329 10
|
5月前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
336 13
|
5月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
545 1
|
9月前
|
人工智能 算法 异构计算
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
近日,阿里云基础网络技术5篇论文被NSDI 2025主会录用。研究涵盖大模型训练网络故障诊断、仿真、容器网络性能诊断、CDN流控算法智能选择及GPU解耦推理优化等领域。其中,《Evolution of Aegis》提出增强现有体系+训练过程感知的两阶段演进路线,显著降低故障诊断耗时;《SimAI》实现高精度大模型集群训练模拟;《Learning Production-Optimized Congestion Control Selection》通过AliCCS优化CDN拥塞控制;《Prism》设计全新GPU解耦推理方案;《ScalaCN》解决容器化RDMA场景性能问题。
489 7
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
|
9月前
|
canal 负载均衡 智能网卡
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
1517 2
|
11月前
|
前端开发 Java 关系型数据库
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
329 10
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
356 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
279 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章