【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(2)

简介: 【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】

【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)https://developer.aliyun.com/article/1536304

3.3 追踪任务

代码如下:【与目标检测不同的是,每个物体有一个ID。

from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt',task='detect')  
# model = YOLO('yolov8n-seg.pt')  
# Track with the model
results = model.track(source="1.mp4", show=True)

3.4 姿态检测任务

姿态检测(图片)代码

from ultralytics import YOLO
import cv2
# Load a model
model = YOLO('yolov8n-pose.pt')  # load a pretrained model (recommended for training)
results = model('./ultralytics/assets/bus.jpg')
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

姿态检测(视频)代码

import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n-pose.pt', task='pose')
# Open the video file
video_path = "1.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()
    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)
        # Visualize the results on the frame
        annotated_frame = results[0].plot()
        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

4. 模型中相关参数及结果说明

4.1模型预测可以设置的参数

results = model(source= ‘./ultralytics/assets/bus.jpg’)

此处可以设置许多不同的参数,参数说明如下:

4.2 results[0].plot()图形展示可以设置的参数说明

results= model(img)
res_plotted = results[0].plot()
cv2.imshow("result", res_plotted)

4.3 模型支持的图片与视频格式

图片格式:

视频格式:

4.4 各任务检测结果results信息说明

上述各任务中的检测结果results均为一个列表,每一个元素为result对象,包含以下属性,不同任务中使用的属性不相同。详细说明如下:

Results.boxes:表示Boxs对象,具有属性和操作边界框的方法

Results.masks:用于获取分割相关信息

Results.probs:表示预测各类别的概率

Results.orig_img:表示内存中加载的原始图像

Results.path:表示输入图像路径的路径

results = model("./ultralytics/assets/bus.jpg")
for result in results:
    **# Detection 目标检测**
    result.boxes.xyxy   # box with xyxy format, (N, 4)
    result.boxes.xywh   # box with xywh format, (N, 4)
    result.boxes.xyxyn  # box with xyxy format but normalized, (N, 4)
    result.boxes.xywhn  # box with xywh format but normalized, (N, 4)
    result.boxes.conf   # confidence score, (N, 1)
    result.boxes.cls    # cls, (N, 1)
    **# Segmentation  分割**
    result.masks.data      # masks, (N, H, W)
    result.masks.xy        # x,y segments (pixels), List[segment] * N
    result.masks.xyn       # x,y segments (normalized), List[segment] * N
    **# Classification  分类**
    result.probs     # cls prob, (num_class, )

总结

由于篇幅原因,本文只是介绍了如何使用预训练模型进行相关的任务检测,关于模型的训练及其他相关内容,后续有时间再进行更新,感兴趣的小伙伴,可以点赞关注我~谢谢

相关文章
|
存储 安全 Java
学成在线笔记+踩坑(12)——用户认证
连接用户中心数据库、账号密码认证、验证码认证
学成在线笔记+踩坑(12)——用户认证
|
机器学习/深度学习 监控 算法
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
|
人工智能 计算机视觉 Python
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
|
存储 人工智能 算法
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
3003 2
|
12月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
18575 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
12月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
4037 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
12月前
|
PyTorch 算法框架/工具 计算机视觉
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
673 2
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
19852 1
|
算法 计算机视觉
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解