Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测

简介: Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测

原文链接:http://tecdat.cn/?p=27042


该数据根据世界各国提供的新病例数据查看文末了解数据获取方式提供。


获取时间序列数据


df=pd.read_csv("C://global.csv")

探索数据


此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值

df.head(10)

这些数据是根据国家和地区报告新病例的数据,但我们只想预测国家的新病例,因此我们使用 groupby 根据国家对它们进行分组


总结数据


执行 groupby 以根据一个国家的新病例来汇总数据,而不是根据地区

d1=df.groupby(\['Country/Region'\]).sum()


描述随机选择的国家的累计新病例增长


from numpy.random import seed
    plt.plot(F\[i\], label = RD\[i\])
    plt.show()

# 我们不需要前两列
d1=d1.iloc\[:,2:\]

# # 检查是否有空值
d1.isnull().sum().any()

我们可以对每个国家进行预测,也可以对所有国家进行预测,这次我们对所有国家进行预测

dlycnmdcas.head()

dalycnfreces.index
dal\_cnre\_ces.index = pd.to\_datetime(dailyonfrmd\_as.index)

点击标题查阅往期内容


结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析


01

02

03

04

plt.plot(dalnimedases)

ne\_ces = daiy\_onme_as.diff().dropna().astype(np.int64)
newcaes


plt.plot(ne_s\[1:\])

nw_s.shape
(153,)

将数据拆分为训练和测试数据


ct=0.75
trin\_aa,tet\_aa = train\_test\_split(ne_ces, pct)
(116,)
``````
plt.plot(tainta)
plt.plot(tesata)

数据标准化


scaler = MinMaxScaler()
testa.shape
(38, 1)

创建序列


lentTe = len(ts_data)
for i in range(timmp, lenhTe):
    X\_st.append(tst\_aa\[i-tmStap:i\])
    y_tt.append(tesata\[i\])
X\_tet=np.array(X\_ts)
ytes=np.array(y_tt)
X_st.shape


Xtrn.shape

#  序列的样本 
X_trn\[0\], yran\[0\]

为股票价格预测设计 RNN 模型


模型:


  1. LSTM
  2. GRU
model.summary()

model.fit(X\_trn y\_rin, epochs=50, batch_size=200)

yprd = (mod.predict(X_test))
MSE = mean\_squared\_error(ytue, y_rd)
plt.figure(figsize=(14,6))

meRU= Sqtal(\[
                keras.layers.GRU(
model\_GRU.fit(Xtrn, ytin,epochs=50,batch\_size=150)

pe_rut = {}
y\_ue = (y\_et.reshape(-1,1))
y\_prd = (modlGU.predict(X\_test))
MSE = mean\_squared\_error(y_ue, ed)

用于预测新病例的机器学习算法


准备数据

d__in.shape

moel=LinearRegression(nos=-2)

ARIMA


COVID-19 新病例预测的自回归综合移动平均线

#我们不需要前两列
df1.head()
daly\_nfrd\_cses = df1.sum(axis=0)
day\_cnir\_ase.index = pd.to\_datetime(da\_onieses.index)
new_cs = dacofmecss.diff().dropna().astype(np.int64)
tri\_ta,tet\_ata = trintt\_it(nw\_es, pct)

ero = men\_squred\_eror(ts_ar, pricos)


plt.figure(figsize=(12,7))
plt.plot(tanat)

相关文章
|
2月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
123 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
26天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
140 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
16天前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
167 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
监控 算法 安全
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
62 10
|
2月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
134 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
30天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章

下一篇
oss创建bucket