YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

简介: YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍

本文记录的是利用PP-LCNet中的DepSepConv模块优化YOLOv11中的C3k2。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 17.4M 55.5GFLOPs 2.7ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、PP-LCNet介绍

PP-LCNet:一个轻量级的CPU卷积神经网络

2.1 PP-LCNet结构设计

2.1.1 特点

论文中总结了一系列在不增加推理时间的情况下提高精度的方法,并结合这些方法实现了精度和速度的更好平衡。基于此提出了设计轻量级CNN的一些通用规则。

2.1.2 模块原理

  • 基本块:使用MobileNetV1中提到的DepthSepConv作为基本块,该模块不会增加模型的推理速度和额外的操作,且已被英特尔CPU加速库深度优化,推理速度可超越其他轻量级块。

  • 激活函数:将BaseNet中的激活函数从ReLU替换为H-Swish,大大提高了性能,同时推理时间几乎不变。

  • SE模块SE模块有助于对网络通道进行加权以获得更好的特征,但在英特尔CPU上会增加推理时间。通过实验发现,将SE模块添加到网络尾部附近的块中,可以发挥更好的作用,实现更好的精度 - 速度平衡。

  • 卷积核大小:实验发现,在网络尾部用5×5卷积核替换3×3卷积核,可以在低延迟和高准确性的情况下达到替换几乎所有层的效果,因此只在尾部进行此替换操作。

  • 1×1卷积层:在GAP后的网络输出维度较小,直接添加最终分类层会丢失特征的组合。为了给网络更强的拟合能力,在最终GAP层后添加了一个1280维大小的1×1卷积(相当于FC层),可以在几乎不增加推理时间的情况下让模型存储更多信息。

在这里插入图片描述

论文:https://arxiv.org/pdf/2109.15099.pdf
源码:https://github.com/PaddlePaddle/PaddleClas

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142887523

目录
相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
167 11
|
11天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
29天前
|
安全 KVM 虚拟化
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
101 2
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
|
1月前
|
机器学习/深度学习 数据采集 运维
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
89 6
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
|
11天前
|
监控 安全 Devops
DevOps 流水线的网络安全盲区与防御策略
在软件研发中,DevOps流水线加速了开发与交付,但也带来严重安全风险。自动化节点和第三方集成成为攻击入口,凭证泄露、供应链渗透、配置错误和依赖混乱等问题频发。企业需构建全流程安全体系,嵌入自动化安全策略,强化访问控制与监控,提升全员安全意识,实现效率与安全的协同发展。
297 0
|
23天前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
172 7
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
79 4
|
3月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
2月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
762 0

热门文章

最新文章