Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

简介: Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

原文链接:http://tecdat.cn/?p=23544 

下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不平稳的时间序列的例子。

每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。

下面是某地区2020年11月降雨量的图解。

image.png

作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。

使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。

>>> sm.stats.acorr_ljungbox(res.resid, lags=\[10\])

Ljung-Box检验

image.png

Dickey-Fuller 检验

image.png

数据操作和模型配置

该数据集由722个月的降雨量数据组成。

选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。

下面是数据集的一个片段。

image.png

然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。

# 形成数据集矩阵
    for i in range(len(df)-previous-1):
        a = df\[i:(i+previous), 0\]
        dataX.append(a)
        dataY.append(df\[i + previous, 0\])

然后用MinMaxScaler对数据进行标准化处理。

image.png

将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。

前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。

# 训练和验证数据的划分
train_size = int(len(df) * 0.8)
val\_size = len(df) - train\_size
train, val = df\[0:train\_size,:\], df\[train\_size:len(df),:\]# 前期的数量
previous = 120

然后,输入被转换为样本、时间步骤、特征的格式。

# 转换输入为\[样本、时间步骤、特征\]。
np.reshape(X_train, (shape\[0\], 1, shape\[1\]))

模型训练和预测

该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。

# 生成LSTM网络
model = tf.keras.Sequential()
# 列出历史中的所有数据
print(history.history.keys())
# 总结准确度变化
plt.plot(history.history\['loss'\])

下面是训练集与验证集的模型损失的关系图。

image.png

预测与实际降雨量的关系图也被生成。


# 绘制所有预测图
plt.plot(valpredPlot)

image.png

预测结果在平均方向准确性(MDA)、平均平方根误差(RMSE)和平均预测误差(MFE)的基础上与验证集进行比较。

mda(Y_val, predictions)0.9090909090909091
>>> mse = mean\_squared\_error(Y_val, predictions)
>>> rmse = sqrt(mse)
>>> forecast_error
>>> mean\_forecast\_error = np.mean(forecast_error)

image.png

  • MDA: 0.909
  • RMSE: 48.5
  • MFE: -1.77

针对测试数据进行预测

虽然验证集的结果相当可观,但只有将模型预测与测试(或未见过的)数据相比较,我们才能对LSTM模型的预测能力有合理的信心。

如前所述,过去10个月的降雨数据被用作测试集。然后,LSTM模型被用来预测未来10个月的情况,然后将预测结果与实际值进行比较。

image.png

至t-120的先前值被用来预测时间t的值。

# 测试(未见过的)预测
np.array(\[tseries.iloctseries.iloc,t

获得的结果如下

  • MDA: 0.8
  • RMSE: 49.57
  • MFE: -6.94

过去10个月的平均降雨量为148.93毫米,预测精度显示出与验证集相似的性能,而且相对于整个测试集计算的平均降雨量而言,误差很低。

结论

在这个例子中,你已经看到:

  • 如何准备用于LSTM模型的数据
  • 构建一个LSTM模型
  • 如何测试LSTM的预测准确性
  • 使用LSTM对不稳定的时间序列进行建模的优势
相关文章
|
7天前
|
机器学习/深度学习 运维 算法
python时间序列异常检测ADTK
`adtk`是Python中用于无监督时间序列异常检测的工具包,包含简单算法、特征加工和流程控制。安装使用`pip install adtk`。数据要求为`DatetimeIndex`格式。异常检测包括滑动窗口统计特征、季节性拆解、降维和重构。提供了ThresholdAD、QuantileAD、InterQuartileRangeAD、GeneralizedESDTestAD等离群点检测算法,以及PersistAD和LevelShiftAD检测突变。此外,SeasonalAD用于季节性异常检测,Pipeline可组合多种算法。5月更文挑战第16天
26 5
python时间序列异常检测ADTK
|
9天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
11天前
|
机器学习/深度学习 数据挖掘 PyTorch
使用Python实现长短时记忆网络(LSTM)的博客教程
使用Python实现长短时记忆网络(LSTM)的博客教程
12 0
|
11天前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言神经网络模型金融应用预测上证指数时间序列可视化
R语言神经网络模型金融应用预测上证指数时间序列可视化
|
11天前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
|
11天前
|
vr&ar Python
Python自激励阈值自回归(SETAR)、ARMA、BDS检验、预测分析太阳黑子时间序列数据
Python自激励阈值自回归(SETAR)、ARMA、BDS检验、预测分析太阳黑子时间序列数据
|
11天前
|
机器学习/深度学习 算法 PyTorch
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
56 0
|
7月前
|
机器学习/深度学习 监控 算法
【tensorflow】连续输入的神经网络模型训练代码
【tensorflow】连续输入的神经网络模型训练代码
|
11天前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
2天前
|
机器学习/深度学习 监控 自动驾驶
【传知代码】从零开始搭建图像去雾神经网络-论文复现
本文介绍了基于集成学习的双分支非均匀去雾神经网络的复现,该网络由迁移学习子网和数据拟合子网组成,分别处理全局表示和数据拟合。网络使用Res2Net作为编码器,并结合通道和像素注意力模块。代码可在提供的链接下载。网络在交通监控、自动驾驶、航海和目标跟踪等领域有广泛应用,通过提升图像质量来提高系统性能。实验在O-Haze、I-Haze和NH-Haze数据集上进行,展示了网络在去除雾霾方面的效果,尽管存在细节模糊和色彩饱和度低的问题。