Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

简介: Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

原文链接:http://tecdat.cn/?p=23544 

下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不平稳的时间序列的例子。

每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。

下面是某地区2020年11月降雨量的图解。

image.png

作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。

使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。

>>> sm.stats.acorr_ljungbox(res.resid, lags=\[10\])

Ljung-Box检验

image.png

Dickey-Fuller 检验

image.png

数据操作和模型配置

该数据集由722个月的降雨量数据组成。

选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。

下面是数据集的一个片段。

image.png

然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。

# 形成数据集矩阵
    for i in range(len(df)-previous-1):
        a = df\[i:(i+previous), 0\]
        dataX.append(a)
        dataY.append(df\[i + previous, 0\])

然后用MinMaxScaler对数据进行标准化处理。

image.png

将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。

前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。

# 训练和验证数据的划分
train_size = int(len(df) * 0.8)
val\_size = len(df) - train\_size
train, val = df\[0:train\_size,:\], df\[train\_size:len(df),:\]# 前期的数量
previous = 120

然后,输入被转换为样本、时间步骤、特征的格式。

# 转换输入为\[样本、时间步骤、特征\]。
np.reshape(X_train, (shape\[0\], 1, shape\[1\]))

模型训练和预测

该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。

# 生成LSTM网络
model = tf.keras.Sequential()
# 列出历史中的所有数据
print(history.history.keys())
# 总结准确度变化
plt.plot(history.history\['loss'\])

下面是训练集与验证集的模型损失的关系图。

image.png

预测与实际降雨量的关系图也被生成。


# 绘制所有预测图
plt.plot(valpredPlot)

image.png

预测结果在平均方向准确性(MDA)、平均平方根误差(RMSE)和平均预测误差(MFE)的基础上与验证集进行比较。

mda(Y_val, predictions)0.9090909090909091
>>> mse = mean\_squared\_error(Y_val, predictions)
>>> rmse = sqrt(mse)
>>> forecast_error
>>> mean\_forecast\_error = np.mean(forecast_error)

image.png

  • MDA: 0.909
  • RMSE: 48.5
  • MFE: -1.77

针对测试数据进行预测

虽然验证集的结果相当可观,但只有将模型预测与测试(或未见过的)数据相比较,我们才能对LSTM模型的预测能力有合理的信心。

如前所述,过去10个月的降雨数据被用作测试集。然后,LSTM模型被用来预测未来10个月的情况,然后将预测结果与实际值进行比较。

image.png

至t-120的先前值被用来预测时间t的值。

# 测试(未见过的)预测
np.array(\[tseries.iloctseries.iloc,t

获得的结果如下

  • MDA: 0.8
  • RMSE: 49.57
  • MFE: -6.94

过去10个月的平均降雨量为148.93毫米,预测精度显示出与验证集相似的性能,而且相对于整个测试集计算的平均降雨量而言,误差很低。

结论

在这个例子中,你已经看到:

  • 如何准备用于LSTM模型的数据
  • 构建一个LSTM模型
  • 如何测试LSTM的预测准确性
  • 使用LSTM对不稳定的时间序列进行建模的优势
相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
155 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
132 0
|
2月前
|
机器学习/深度学习 索引 Python
python之序列
python之序列
143 59
|
25天前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
26天前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
|
3月前
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
57 1
时间序列特征提取:从理论到Python代码实践
|
3月前
|
机器学习/深度学习 分布式计算 大数据
几行 Python 代码就可以提取数百个时间序列特征
几行 Python 代码就可以提取数百个时间序列特征
|
3月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
106 2
下一篇
无影云桌面