神经网络不再是黑魔法!Python带你一步步拆解,让AI学习看得见

简介: 【8月更文挑战第3天】神经网络,曾被视为难以触及的黑魔法,现已在Python的助力下变得平易近人。以TensorFlow或PyTorch为“魔法杖”,仅需几行Python代码即可构建强大的AI模型。从零开始,我们将教导AI识别手写数字,利用经典的MNIST数据集。通过数据加载、预处理至模型训练与评估,每个步骤都如精心编排的舞蹈般清晰可见。随着训练深入,AI逐渐学会辨认每个数字,其学习过程直观展现。这不仅揭示了神经网络的奥秘,更证明了任何人都能借助Python创造AI奇迹,共同探索未来的无限可能。

神经网络,这个曾几何时听起来如同巫师咒语般的名词,如今已不再是遥不可及的黑魔法。随着Python这一强大编程语言的普及,我们得以亲手揭开它神秘的面纱,让AI的学习过程变得触手可及,甚至可以说,是“看得见”的。今天,就让我们踏上一场探索之旅,用Python作为钥匙,一步步拆解神经网络的奥秘。

想象一下,你手中握有一把名叫“TensorFlow”或“PyTorch”的魔法杖,这些现代机器学习库如同古老的咒语书,里面记载了构建神经网络所需的一切咒语(即代码)。我们不需要复杂的仪式,只需几行简洁的Python代码,就能召唤出强大的AI模型。

首先,让我们从构建一个最简单的神经网络开始——一个用于识别手写数字的模型。想象一下,你正在教一个刚出生的AI宝宝识别0到9这些简单的数字。我们会使用MNIST数据集,这是一个包含了成千上万张手写数字图片的数据集,每张图片都被标记了对应的数字。

python
import tensorflow as tf
from tensorflow.keras import layers, models

加载MNIST数据集

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

归一化处理

train_images, test_images = train_images / 255.0, test_images / 255.0

构建模型

model = models.Sequential([
layers.Flatten(input_shape=(28, 28)),
layers.Dense(128, activation='relu'),
layers.Dropout(0.2),
layers.Dense(10)
])

添加softmax层用于分类

model.add(layers.Softmax())

编译模型

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

训练模型

model.fit(train_images, train_labels, epochs=5)

评估模型

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
上面的代码,就像是一场精心编排的舞蹈,每一行都是对神经网络构建与训练过程的精准描述。从数据加载、预处理,到模型定义、编译、训练,再到最后的评估,每一个步骤都清晰可见,不再神秘。

随着模型训练的进行,你会看到准确率逐渐提升,这就像是AI宝宝在不断学习,从最初的懵懂无知,到能够准确识别出每一个手写数字。这种“看得见”的学习过程,正是神经网络魅力的所在。

如今,神经网络已经广泛应用于图像识别、语音识别、自然语言处理等多个领域,它们不再是遥不可及的黑魔法,而是我们可以亲手塑造、训练的强大工具。通过Python,我们不仅能够理解神经网络的原理,更能亲手创造出属于自己的AI奇迹。让我们携手并进,在这个充满无限可能的AI时代,共同探索未知的边界吧!

相关文章
|
24天前
|
数据库 Python
Python学习的自我理解和想法(18)
这是我在学习Python第18天的总结,内容基于B站千锋教育课程,主要涉及面向对象编程的核心概念。包括:`self`关键字的作用、魔术方法的特点与使用(如构造函数`__init__`和析构函数`__del__`)、类属性与对象属性的区别及修改方式。通过学习,我初步理解了如何利用这些机制实现更灵活的程序设计,但深知目前对Python的理解仍较浅显,欢迎指正交流!
|
24天前
|
Python
Python学习的自我理解和想法(19)
这是一篇关于Python面向对象学习的总结,基于B站千锋教育课程内容编写。主要涵盖三大特性:封装、继承与多态。详细讲解了继承(包括构造函数继承、多继承)及类方法与静态方法的定义、调用及区别。尽管开学后时间有限,但作者仍对所学内容进行了系统梳理,并分享了自己的理解,欢迎指正交流。
|
11天前
|
Python
Python学习的自我理解和想法(26)
这是一篇关于使用Python操作Word文档的学习总结,基于B站千锋教育课程内容编写。主要介绍了通过`python-docx`库在Word中插入列表(有序与无序)、表格,以及读取docx文件的方法。详细展示了代码示例与结果,涵盖创建文档对象、添加数据、设置样式、保存文件等步骤。虽为开学后时间有限下的简要记录,但仍清晰梳理了核心知识点,有助于初学者掌握自动化办公技巧。不足之处欢迎指正!
|
22天前
|
数据采集 数据挖掘 Python
Python学习的自我理解和想法(22)
本文记录了作者学习Python第22天的内容——正则表达式,基于B站千锋教育课程。文章简要介绍了正则表达式的概念、特点及使用场景(如爬虫、数据清洗等),并通过示例解析了`re.search()`、`re.match()`、拆分、替换和匹配中文等基本语法。正则表达式是文本处理的重要工具,尽管入门较难,但功能强大。作者表示后续会深入讲解其应用,并强调学好正则对爬虫学习的帮助。因时间有限,内容为入门概述,不足之处敬请谅解。
|
18天前
|
索引 Python
Python学习的自我理解和想法(24)
本文记录了学习Python操作Excel的第24天内容,基于B站千锋教育课程。主要介绍openpyxl插件的使用,包括安装、读取与写入Excel文件、插入图表等操作。具体内容涵盖加载工作簿、获取单元格数据、创建和保存工作表,以及通过图表展示数据。因开学时间有限,文章简要概述了各步骤代码实现,适合初学者参考学习。如有不足之处,欢迎指正!
|
24天前
|
设计模式 数据库 Python
Python学习的自我理解和想法(20)
这是我在B站千锋教育课程中学习Python第20天的总结,主要涉及面向对象编程的核心概念。内容包括:私有属性与私有方法的定义、语法及调用方式;多态的含义与实现,强调父类引用指向子类对象的特点;单例设计模式的定义、应用场景及实现步骤。通过学习,我掌握了如何在类中保护数据(私有化)、实现灵活的方法重写(多态)以及确保单一实例(单例模式)。由于开学时间有限,内容简明扼要,如有不足之处,欢迎指正!
|
15天前
|
Python
Python学习的自我理解和想法(25)
这是一篇关于Python操作Word文档(docx)的教程总结,基于B站千锋教育课程学习(非原创代码)。主要内容包括:1) docx库插件安装;2) 创建与编辑Word文档,如添加标题、段落、设置字体样式及保存;3) 向新或现有Word文档插入图片。通过简单示例展示了如何高效使用python-docx库完成文档操作。因开学时间有限,内容精简,后续将更新列表和表格相关内容。欢迎指正交流!
|
18天前
|
SQL 数据采集 人工智能
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
80 12
|
22天前
|
Python
Python学习的自我理解和想法(23)
本文记录了学习Python正则表达式的第23天心得,内容基于B站麦叔课程。文章分为三个部分:1) 正则表达式的七个境界,从固定字符串到内部约束逐步深入;2) 写正则表达式的套路,以座机号码为例解析模式设计;3) 正则表达式语法大全,涵盖字符类别、重复次数、组合模式、位置、分组、标记、特殊字符和替换等知识点。总结中表达了对知识的理解,并欢迎指正。
|
24天前
|
定位技术 Python Windows
Python学习的自我理解和想法(21)
这是一篇关于Python文件操作的学习总结,基于B站千锋教育课程内容整理而成。文章详细介绍了文件操作的基础知识,包括参数(路径、模式、编码)、注意事项(编码一致性、文件关闭)以及具体操作(创建、读取、写入文件)。同时,深入解析了路径的概念,区分绝对路径与相对路径,并通过示例演示两者在实际应用中的差异。此外,还强调了不同模式(如"w"覆盖写入和"a"追加写入)对文件内容的影响。整体内容逻辑清晰,适合初学者掌握Python文件操作的核心技巧。