Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

回归算法最小角回归(LARS)通过高维数据的线性组合提供变量。它与正向逐步回归有关。在这种方法中,在每个步骤中选择最相关的变量,其方向在两个预测因子之间是等角的。  

在本教程中,我们将学习如何用Python中的LARS和Lasso Lars算法拟合回归数据。我们将在本教程中估计住房数据集。这篇文章包括

  1. 准备数据
  2. 如何使用LARS
  3. 如何使用Lasso LARS

让我们从加载所需的包开始。

from sklearn import linear_model

准备数据

我们将加载波士顿的数据集,并将其分成训练和测试两部分。

boston = load_boston()
xtrain, xtest, ytrain, ytest=train\_test\_split(x, y, test_size=0.15)

如何使用LARS

我们将用Lars()类定义模型(有默认参数),并用训练数据来拟合它。

Lars().fit(xtrain, ytrain)

并检查模型的系数。

print(lars.coef_)
\[-1.16800795e-01  1.02016954e-02 -2.99472206e-01  4.21380667e+00
 -2.18450214e+01  4.01430635e+00 -9.90351759e-03 -1.60916999e+00
 -2.32195752e-01  2.80140313e-02 -1.08077980e+00  1.07377184e-02
 -5.02331702e-01\]

接下来,我们将预测测试数据并检查MSE和RMSE指标。

mean\_squared\_error(ytest, ypred)
print("MSE: %.2f" % mse)
MSE: 36.96
print("RMSE: %.2f" % sqrt(mse))
RMSE: 6.08

最后,我们将创建绘图,使原始数据和预测数据可视化。

plt.show()

如何使用Lasso Lars

LassoLars是LARS算法与Lasso模型的一个实现。我们将用LassoLars()类定义模型,将α参数设置为0.1,并在训练数据上拟合模型。

LassoLars(alpha =.1).fit(xtrain, ytrain)

我们可以检查系数。

print(coef_)
\[ 0.          0.          0.          0.          0.          3.00873485
  0.          0.          0.          0.         -0.28423008  0.
 -0.42849354\]

接下来,我们将预测测试数据并检查MSE和RMSE指标。

predict(xtest)
print("MSE: %.2f" % mse)
MSE: 45.59
print("RMSE: %.2f" % sqrt(mse))
RMSE: 6.75

最后,我们将创建绘图,使原始数据和预测数据可视化。

plt.show()

在本教程中,我们已经简单了解了如何用LARS和Lasso Lars算法来拟合和预测回归数据。

参考文献

  1. Least Angle Regression, by Efron Bradley; Hastie Trevor; Johnstone Iain; Tibshirani Robert (2004)
  2. Least-Angel Regression, Wikipedia

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
43 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
39 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
51 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
16天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
1月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
16天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
17天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
18天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
17天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
下一篇
无影云桌面