Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

回归算法最小角回归(LARS)通过高维数据的线性组合提供变量。它与正向逐步回归有关。在这种方法中,在每个步骤中选择最相关的变量,其方向在两个预测因子之间是等角的。  

在本教程中,我们将学习如何用Python中的LARS和Lasso Lars算法拟合回归数据。我们将在本教程中估计住房数据集。这篇文章包括

  1. 准备数据
  2. 如何使用LARS
  3. 如何使用Lasso LARS

让我们从加载所需的包开始。

from sklearn import linear_model

准备数据

我们将加载波士顿的数据集,并将其分成训练和测试两部分。

boston = load_boston()
xtrain, xtest, ytrain, ytest=train\_test\_split(x, y, test_size=0.15)

如何使用LARS

我们将用Lars()类定义模型(有默认参数),并用训练数据来拟合它。

Lars().fit(xtrain, ytrain)

并检查模型的系数。

print(lars.coef_)
\[-1.16800795e-01  1.02016954e-02 -2.99472206e-01  4.21380667e+00
 -2.18450214e+01  4.01430635e+00 -9.90351759e-03 -1.60916999e+00
 -2.32195752e-01  2.80140313e-02 -1.08077980e+00  1.07377184e-02
 -5.02331702e-01\]

接下来,我们将预测测试数据并检查MSE和RMSE指标。

mean\_squared\_error(ytest, ypred)
print("MSE: %.2f" % mse)
MSE: 36.96
print("RMSE: %.2f" % sqrt(mse))
RMSE: 6.08

最后,我们将创建绘图,使原始数据和预测数据可视化。

plt.show()

如何使用Lasso Lars

LassoLars是LARS算法与Lasso模型的一个实现。我们将用LassoLars()类定义模型,将α参数设置为0.1,并在训练数据上拟合模型。

LassoLars(alpha =.1).fit(xtrain, ytrain)

我们可以检查系数。

print(coef_)
\[ 0.          0.          0.          0.          0.          3.00873485
  0.          0.          0.          0.         -0.28423008  0.
 -0.42849354\]

接下来,我们将预测测试数据并检查MSE和RMSE指标。

predict(xtest)
print("MSE: %.2f" % mse)
MSE: 45.59
print("RMSE: %.2f" % sqrt(mse))
RMSE: 6.75

最后,我们将创建绘图,使原始数据和预测数据可视化。

plt.show()

在本教程中,我们已经简单了解了如何用LARS和Lasso Lars算法来拟合和预测回归数据。

参考文献

  1. Least Angle Regression, by Efron Bradley; Hastie Trevor; Johnstone Iain; Tibshirani Robert (2004)
  2. Least-Angel Regression, Wikipedia

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
1天前
|
算法 搜索推荐 Java
Java数据结构 -- 常见算法分析(查找算法、排序算法)精解详解!!!
Java数据结构 -- 常见算法分析(查找算法、排序算法)精解详解!!!
6 0
|
4天前
|
搜索推荐 算法 程序员
常见排序算法及其稳定性分析
常见排序算法及其稳定性分析
|
4天前
|
存储 算法 搜索推荐
【大数据分析与挖掘技术】Mahout推荐算法
【大数据分析与挖掘技术】Mahout推荐算法
10 0
|
5天前
|
机器学习/深度学习 人工智能 算法
食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
食物识别系统采用TensorFlow的ResNet50模型,训练了包含11类食物的数据集,生成高精度H5模型。系统整合Django框架,提供网页平台,用户可上传图片进行食物识别。效果图片展示成功识别各类食物。[查看演示视频、代码及安装指南](https://www.yuque.com/ziwu/yygu3z/yhd6a7vai4o9iuys?singleDoc#)。项目利用深度学习的卷积神经网络(CNN),其局部感受野和权重共享机制适于图像识别,广泛应用于医疗图像分析等领域。示例代码展示了一个使用TensorFlow训练的简单CNN模型,用于MNIST手写数字识别。
22 3
|
5天前
|
算法 Python
Python中实现图论算法
Python中实现图论算法 “【5月更文挑战第20天】”
13 3
|
10天前
|
算法 搜索推荐 C语言
Python实现数据结构与算法
【5月更文挑战第13天】学习数据结构与算法能提升编程能力,解决复杂问题,助你面试成功。从选择资源(如《算法导论》、Coursera课程、LeetCode)到实践编码,逐步学习基本概念,通过Python实现栈、队列和快速排序。不断练习、理解原理,探索高级数据结构与算法,参与开源项目和算法竞赛,持续反思与实践,以提升技术能力。
6 0
|
10天前
|
机器学习/深度学习 算法 数据可视化
Python 数据结构和算法实用指南(四)(4)
Python 数据结构和算法实用指南(四)
19 1
|
10天前
|
机器学习/深度学习 存储 算法
Python 数据结构和算法实用指南(四)(3)
Python 数据结构和算法实用指南(四)
15 1
|
4天前
|
存储 算法 安全
Python编程实验六:面向对象应用
Python编程实验六:面向对象应用
20 1
|
4天前
|
Python
Python编程作业五:面向对象编程
Python编程作业五:面向对象编程
20 1