在Python的Pandas中,可以通过直接赋值或使用apply函数在DataFrame添加新列。

简介: 【5月更文挑战第2天】在Python的Pandas中,可以通过直接赋值或使用apply函数在DataFrame添加新列。方法一是直接赋值,如`df['C'] = 0`,创建新列C并初始化为0。方法二是应用函数,例如定义`add_column`函数计算A列和B列之和,然后使用`df.apply(add_column, axis=1)`,使C列存储每行A、B列的和。

在Python的pandas库中,你可以通过多种方法在DataFrame中添加新列。以下是两个常见的方法:

方法一:直接赋值

python
import pandas as pd

创建一个示例DataFrame

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

添加一个新列C,初始值为0

df['C'] = 0

print(df)
在这个例子中,新列C的初始值全部为0。

方法二:使用apply函数

python
import pandas as pd

创建一个示例DataFrame

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

定义一个函数,将应用到DataFrame的每一行,将新列的值设为A列值和B列值之和

def add_column(row):
return row['A'] + row['B']

使用apply函数添加新列C

df['C'] = df.apply(add_column, axis=1)

print(df)
在这个例子中,新列C的值是A列值和B列值之和。注意,这个方法通常在你需要在每行计算出一个新列值的情况下使用。

相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
2月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
212 67
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14
|
1月前
|
存储 Python
[oeasy]python056_python中下划线是什么意思_underscore_理解_声明与赋值_改名字
在Python中,下划线有多种用途。单下划线(_)常用于避免命名冲突,如将`max`改为`max_`以保留内置函数功能。双下划线(__var__)通常用于特殊方法和属性,如`__name__`、`__doc__`等。此外,单下划线(_)在交互式解释器中表示上一次表达式的值,但不建议作为普通变量名使用。总结:下划线用于避免命名冲突及特殊标识。
35 1
|
2月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
161 10
|
2月前
|
Python 容器
[oeasy]python048_用变量赋值_连等赋值_解包赋值_unpack_assignment _
本文介绍了Python中变量赋值的不同方式,包括使用字面量和另一个变量进行赋值。通过`id()`函数展示了变量在内存中的唯一地址,并探讨了变量、模块、函数及类类型的地址特性。文章还讲解了连等赋值和解包赋值的概念,以及如何查看已声明的变量。最后总结了所有对象(如变量、模块、函数、类)都有其类型且在内存中有唯一的引用地址,构成了Python系统的基石。
36 5
|
2月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
63 4
|
3月前
|
存储 Python 容器
[oeasy]python045_[词根溯源]赋值_assignment_usage_使用
本文回顾了上一次讲解的内容,重点讨论了变量的概念及其在各种系统和游戏中的应用。文章详细解释了变量的声明与赋值操作,强调了赋值即为将具体值存储到变量名下的过程。同时,通过例子说明了字面量(如数字0)不能被赋值给其他值的原因。此外,还探讨了“赋值”一词的来源及其英文表达“assignment”的含义,并简要介绍了与之相关的英语词汇,如sign、assign、signal等。最后,总结了本次课程的核心内容,即赋值操作的定义和实现方式。
39 3
|
3月前
|
Python
Python赋值运算符
Python赋值运算符。
34 2

推荐镜像

更多