基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。

1.程序功能描述
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,带容量限制的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)是最基础也是最常见的一个变种。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解CVRP问题中的应用。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

af26240b461254add3fda6a67fc9cf23_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

e2384bd0fbdae4a0885812fba5276f1d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```while gen <= Iters
gen
%更新
for i=1:Npop
%交叉
Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Capc); %计算距离
if Popd(i) < Pdbest(i)
Pbest(i,:)= Pops(i,:);
Pdbest(i) = Popd(i);
end
%更新Gbest
[mindis,index] = min(Pdbest);
if mindis < Gdbest
Gbest = Pbest(index,:);
Gdbest = mindis;
end

    %粒子与Gbest交叉
    Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Gbest(2:end-1));
    Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Capc); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:) = Pops(i,:); 
        Pdbest(i)  = Popd(i); 
    end

    %粒子变异
    Pops(i,:)=func_Mut(Pops(i,:));
    Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Capc); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:)= Pops(i,:); 
        Pdbest(i) = Popd(i); 
    end
    %更新Gbest
    [mindis,index] = min(Pdbest); %最短距离

    if mindis < Gdbest 
        Gbest = Pbest(index,:); 
        Gdbest = mindis; 
    end
end
%存储此代最短距离
gbest(gen)=Gdbest;
%更新迭代次数
gen=gen+1;

end

for i=1:length(Gbest)-1
if Gbest(i)==Gbest(i+1)
Gbest(i)=0;
end
end
Gbest(Gbest==0)=[];
Gbest=Gbest-1;
p=num2str(Gbest(1)); %配送路径
for i=2:length(Gbest)
p=[p,' -> ',num2str(Gbest(i))];
end
disp(p)
Gdbest

figure
plot(gbest,'LineWidth',2)
xlim([1 gen-1])
xlabel('迭代次数')
ylabel('最优距离(km)')

DrawPath(Gbest,City)
0014

```

4.本算法原理
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,带容量限制的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)是最基础也是最常见的一个变种。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解CVRP问题中的应用。

4.1 CVRP问题描述
CVRP问题可以描述为:给定一个中心仓库和一系列客户,每个客户有一定的货物需求,每辆车有最大载重量限制,要求合理安排车辆的行驶路径,使得在满足所有客户需求的前提下,总行驶距离最短。

4.2 遗传算法(Genetic Algorithm, GA)
遗传算法是一种模拟自然选择和遗传学机制的优化算法。在求解CVRP问题时,GA通过编码生成初始种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

   编码方式:采用自然数编码,每个客户的编号代表一个基因,一条路径则由一串基因组成。
  初始种群生成:随机生成一定数量的初始路径,构成初始种群。
  适应度函数:以适应度函数来衡量每个个体的优劣。在CVRP问题中,适应度函数通常取为总行驶距离的倒数。
   选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
  交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
  变异操作:通过随机交换路径中两个客户的位置来实现变异。

4.3 粒子群优化算法(Particle Swarm Optimization, PSO)
粒子群优化算法是一种模拟鸟群觅食行为的优化算法。在求解CVRP问题时,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

   粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中客户的排列顺序决定。
   速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest[j] - x[i][j]),其中v[i][j]表示第i个粒子在第j维上的速度,x[i][j]表示第i个粒子在第j维上的位置,pbest[i][j]表示第i个粒子在第j维上的历史最优位置,gbest[j]表示群体在第j维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
    位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:x[i][j] = x[i][j] + v[i][j]。需要注意的是,在更新位置时要保证新生成的路径满足CVRP问题的约束条件。

4.4 GA-PSO混合优化算法
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解CVRP问题的效率和质量。具体步骤如下:

初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。

相关文章
|
4天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
1月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
16天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
19天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
23天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
下一篇
无影云桌面