首先看中间是一个Spark集群,可以理解为是Spark的 standalone集群,集群中有6个节点
左边是Spark的客户端节点,这个节点主要负责向Spark集群提交任务,假设在这里我们向Spark集群提交了一个任务
那这个Spark任务肯定会有一个数据源,数据源在这我们使用HDFS,就是让Spark计算HDFS中的数据。
当Spark任务把HDFS中的数据读取出来之后,它会把HDFS中的数据转化为RDD,RDD其实是一个弹性分布式数据集,它其实是一个逻辑概念,在这你先把它理解为是一个数据集合就可以了,后面我们会详细分析这个RDD。
在这里这个RDD你就可以认为是包含了我们读取的HDFS上的数据
其中这个RDD是有分区这个特性的,也就是一整份数据会被分成多份,
假设我们现在从HDFS中读取的这份数据被转化为RDD之后,在RDD中分成了3份,那这3份数据可能会分布在3个不同的节点上面,对应这里面的节点1、节点2、节点3
这个RDD的3个分区的数据对应的是partiton-1、partition-2、partition-3
这样的好处是可以并行处理了,后期每个节点就可以计算当前节点上的这一个分区的数据。
这个计算思想是不是类似于MapReduce里面的计算思想啊,本地计算,但是有一点区别就是这个RDD的数据是在内存中的。
假设现在这个RDD中每个分区中的数据有10w条
那接下来我们就想对这个RDD中的数据进行计算了,可以使用一些高阶函数进行计算,例如:flatMap、map之类的
那在这我们先使用flatMap对数据进行处理,把每一行数据转成多行数据
此时flatMap这个函数就会在节点1、节点2和节点3上并行执行了。
计算之后的结果还是一个带有分区的RDD,那这个RDD我们假设存在节点4、节点5和节点6上面。
此时每个节点上面会有一个分区的数据,我们给这些分区数据起名叫partition-4、partition-5、partition-6
正常情况下,前面节点1上的数据处理之后会发送到节点4上面
另外两个节点也是一样的。
此时经过flatmap计算之后,前面RDD的数据传输到后面节点上面这个过程是不需要经过shuffle的,可以直接在内存中通过网络传输过去,因为现在这两个RDD的分区数量是一一对应的。
后面可能还会通过map、或者其它的一些高阶函数对数据进行处理,当处理到最后一步的时候是需要把数据存储起来的,在这我们选择把数据存储到hdfs上面,其实在实际工作中,针对这种离线计算,大部分的结果数据都是存储在hdfs上面的,当然了也可以存储到其它的存储介质中。
好,那这个就是Spark的基本工作原理。
再梳理一下,首先通过Spark客户端提交任务到Spark集群,然后Spark任务在执行的时候会读取数据源HDFS中的数据,将数据加载到内存中,转化为RDD,然后针对RDD调用一些高阶函数对数据进行处理,中间可以调用多个高阶函数,最终把计算出来的结果数据写到HDFS中。