【赵渝强老师】Spark Streaming中的DStream

简介: 本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。

b077.png

要开发Spark Streaming应用程序,核心是通过StreamingContext创建DStream。因此DStream对象就是Spark Streaming中最核心的对象。DStream的全称是Discretized Stream,翻译成中文是离散流。它是Spark Streaming对流式数据的基本数据抽象,或者说是Spark Streaming的数据模型。DStream的核心是通过时间的采用间隔将连续的数据流转换成是一系列不连续的RDD,在由Transformation进行转换,从而达到处理流式数据的目的。因此从表现形式上看,DStream是由一系列连续的RDD组成,因此DStream也就具备了RDD的特性。

   

视频讲解如下:

 

以上面开发的MyNetworkWordCount程序为例,StreamingContext将每个3秒采样一次流式数据生成对应的RDD,其生成RDD的过程如下图所示。


 

通过上图中可以看出DStream的表现形式其实就是RDD,因此操作DStream和操作RDD的本质其实是一样的。由于DStream是由一系列离散的RDD组成,因此Spark Streaming的其实是一个小批的处理模型,本质上依然还是一个批处理的离线计算。


相关文章
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
251 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
290 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
341 0
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
605 15
|
12月前
|
分布式计算 Spark
【赵渝强老师】Spark的容错机制:检查点
Spark通过Checkpoint机制将RDD状态持久化到磁盘,以支持容错。当任务执行出错时,可以从检查点位置重新计算,减少开销。Checkpoint目录可设置为本地文件夹或HDFS。建议生产系统使用高可靠的文件系统保存检查点。文中详细介绍了在本地和HDFS上设置检查点目录的步骤,并附有代码示例和视频讲解。
325 7
|
12月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
349 0
【赵渝强老师】Spark RDD的缓存机制
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
364 0
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
220 0
|
SQL 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
236 0
|
存储 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
201 0