【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)

MapReduce是Hadoop系统核心组件之一,它是一种可用于大数据并行处理的计算模型、框架和平台,主要解决海量数据的计算,是目前分布式计算模型中应用较为广泛的一种。

一、MapReduce核心思想

MapReduce的核心思想是“分而治之”。所谓“分而治之”就是把一个复杂的问题,按照一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的结果,把各部分的结果组成整个问题的结果,这种思想来源于日常生活与工作时的经验,同样也完全适合技术领域。任务分解的前提是这些任务没有必然的依赖关系,可以单独执行任务,将结果合并,即把任务划分中的各个子任务的结果进行全局汇总

MapReduce作为一种分布式计算模型,它主要用于解决海量数据的计算问题。使用MapReduce操作海量数据时,每个MapReduce程序被初始化为一个工作任务,每个工作任务可以分为Map和Reduce两个阶段。

构架方面:以统一构架位开发人员隐藏系统层细节,程序员只需要集中于应用问题和算法本身,而不需要关注其他系统层的处理细节,大大减轻了开发人员开发程序的负担

该框架可负责自动完成以下系统底层相关的处理

1:计算任务的自动划分和调度

2:数据的自动化分布存储和划分

3:处理数据与计算任务的同步

4:结果数据的收集整理

5:系统通信 负载平衡 计算性能优化处理

6:处理系统节点出错检测和失效恢复

MapReduce就是“任务的分解与结果的汇总”。即使用户不懂分布式计算框架的内部运行机制,但是只要能用Map和Reduce思想描述清楚要处理的问题,就能轻松地在Hadoop集群上实现分布式计算功能。

二、MapReduce编程模型

MapReduce是一种编程模型,用于处理大规模数据集的并行运算。使用MapReduce执行计算任务的时候,每个任务的执行过程都会被分为两个阶段,分别是Map和Reduce,其中Map阶段用于对原始数据进行处理,Reduce阶段用于对Map阶段的结果进行汇总,得到最终结果。

三、MapReduce工作过程

包括输入和拆分-执行map-执行Shuffle过程-执行Reduce-写入文件 五个步骤

四、MapReduce编程组件

MapReduce编程组件主要有以下六种

InputFormat组件:主要用于描述输入数据的格式,它提供两个功能,分别是数据切分和为Mapper提供输入数据。

Mapper组件:Hadoop提供的Mapper类是实现Map任务的一个抽象基类,该基类提供了一个map()方法。

OutputFormat组件:OutputFormat是一个用于描述MapReduce程序输出格式和规范的抽象类。

Reducer组件:Map过程输出的键值对,将由Reducer组件进行合并处理,最终的某种形式的结果输出。

Combiner组件:Combiner组件的作用就是对Map阶段的输出的重复数据先做一次合并计算,然后把新的(key,value)作为Reduce阶段的输入。

Partitioner组件:Partitioner组件可以让Map对Key进行分区,从而可以根据不同的key分发到不同的Reduce中去处理,其目的就是将key均匀分布在ReduceTask上

五、MapReduce工作原理

MapReduce作业的执行设计四个独立的实体

1:Jobclient:编写MapReduce客户端程序,配置作业和提交作业,是开发人员需要完成的工作

2:JobTracker:初始化作业,分配作业,与TaskTracker通信,协调整个作业的执行

3:TaskTracker:保持与JobTracker的通信,在分配的数据片段上执行Map或Reduce任务,TaskTracker与JobTracker的不同是在执行任务时TaskTracker可以有多个,JobTracker只会有一个

4:HDFS:保存作业的数据,配置信息等等,最后的结果也保存在HDFS上面

创作不易 觉得有帮助请点赞关注收藏~~~

 

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
17天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
63 2
|
19天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
13天前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
19天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
22天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
47 3
|
22天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
57 2
|
25天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
73 2
|
27天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
86 2
|
28天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
65 1
|
28天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
82 2
ClickHouse与大数据生态集成:Spark & Flink 实战