【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)

简介: 【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)

一、相关基本概念

文件系统。文件系统是操作系统提供的用于解决“如何在磁盘上组织文件”的一系列方法和数据结构。

分布式文件系统。分布式文件系统是指利用多台计算机协同作用解决单台计算机所不能解决的存储问题的文件系统。如单机负载高、数据不安全等问题。

HDFS。英文全称为Hadoop Distributed File System,是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,它是基于流式数据访问和处理超大文件的需求而开发的分布式文件系统,可以运行于廉价的商用服务器上。 HDFS 源于谷歌公司在2003年10月份发表的GFS(Google File System) 论文

二、HDFS存储架构

HDFS采用主从架构(Master/Slave架构)

HDFS集群是由一个NameNode和多个的 DataNode组成。

HDFS集群是由一个NameNode和多个的 DataNode组成

1:Namenode

NameNode是HDFS集群的主服务器,通常称为名称节点或者主节点。一旦NameNode关闭,就无法访问Hadoop集群。NameNode主要以元数据的形式进行管理和存储,用于维护文件系统名称并管理客户端对文件的访问;NameNode记录对文件系统名称空间或其属性的任何更改操作;HDFS负责整个数据集群的管理,并且在配置文件中可以设置备份数量,这些信息都由NameNode存储。

2:Datanode

DataNode是HDFS集群中的从服务器,通常称为数据节点。文件系统存储文件的方式是将文件切分成多个数据块,这些数据块实际上是存储在DataNode节点中的,因此DataNode机器需要配置大量磁盘空间。它与NameNode保持不断的通信,DataNode在客户端或者NameNode的调度下,存储并检索数据块,对数据块进行创建、删除等操作,并且定期向NameNode发送所存储的数据块列表。

三、HDFS写入流程

1)Hadoop客户端和NameNode通信请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

2)NameNode返回信息给hadoop客户端是否可以上传。

3)Hadoop客户端会先对文件进行切分,比如:一个block块大小为128M,如果上传文件300M大小,文件会被切分成3个块,两个128M、一个44M,并向NameNode发上传请求。

4)NameNode返回DataNode的服务器信息给hadoop客户端。

5)hadoop客户端请求一台DataNode上传数据(本质上是一个RPC调用,建立通道),第一个DataNode收到请求会继续调用第二个DataNode,然后第二个调用第三个DataNode,将整个通道建立完成,逐级返回hadoop客户端。

6)hadoop客户端开始往第一个DataNode上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位(一个packet为64kb),当然在写入的时候通道会进行数据校验,它并不是通过一个packet进行一次校验而是以checksum为单位进行校验(512byte),第一台DataNode收到一个packet就会传给第二台,第二台传给第三台;第一台每传一个packet会放入一个应答队列等待应答。

7)当一个block传输完成之后,hadoop客户端再次请求NameNode上传第二个block的DataNode服务器,直至所有的block上传完成。

四、HDFS读取流程

1)hadoop客户端发送请求,调用Distributed File System API的open方法发送请求到NameNode,获得存放在NameNode节点上文件的block位置映射信息。

2)Namenode把文件所有block的位置信息返回给hadoop客户端。

3)hadoop客户端拿到block的位置信息后调用FSDataInputStream API的read方法并行的读取block信息,block默认有3个副本,所以每一个block只需要从一个副本读取。

4)hadoop客户端从DataNode上取回文件的所有block按照一定的顺序组成最终需要的文件。

五、HDFS的优缺点

随着互联网数据规模的不断增大,对文件存储系统提出了更高的要求,需要更大的容量、好更的性能以及安全性更高的文件存储系统,与传统分布式文件系统一样,HDFS分布式文件系统也是通过计算机网络与节点相连,也有传统分布式文件系统的优点和缺点。

1:HDFS的优点

高容错性

适合处理高吞吐量

适合存储和管理大规模数据

适合一次写入 多次读取

适合处理非结构化数据

2:HDFS的缺点

不适合低延时数据访问

不适合小文件存储

不支持文件随机修改

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
存储 分布式计算 Hadoop
大数据处理架构Hadoop
【4月更文挑战第10天】Hadoop是开源的分布式计算框架,核心包括MapReduce和HDFS,用于海量数据的存储和计算。具备高可靠性、高扩展性、高效率和低成本优势,但存在低延迟访问、小文件存储和多用户写入等问题。运行模式有单机、伪分布式和分布式。NameNode管理文件系统,DataNode存储数据并处理请求。Hadoop为大数据处理提供高效可靠的解决方案。
21 2
|
23天前
|
Cloud Native 数据处理 云计算
探索云原生技术在大数据分析中的应用
随着云计算技术的不断发展,云原生架构作为一种全新的软件开发和部署模式,正逐渐引起企业的广泛关注。本文将探讨云原生技术在大数据分析领域的应用,介绍其优势与挑战,并探讨如何利用云原生技术提升大数据分析的效率和可靠性。
|
4天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
5天前
|
SQL 分布式计算 Hadoop
利用Hive与Hadoop构建大数据仓库:从零到一
【4月更文挑战第7天】本文介绍了如何使用Apache Hive与Hadoop构建大数据仓库。Hadoop的HDFS和YARN提供分布式存储和资源管理,而Hive作为基于Hadoop的数据仓库系统,通过HiveQL简化大数据查询。构建过程包括设置Hadoop集群、安装配置Hive、数据导入与管理、查询分析以及ETL与调度。大数据仓库的应用场景包括海量数据存储、离线分析、数据服务化和数据湖构建,为企业决策和创新提供支持。
35 1
|
13天前
|
NoSQL 大数据 数据挖掘
现代数据库技术与大数据应用
随着信息时代的到来,数据量呈指数级增长,对数据库技术提出了前所未有的挑战。本文将介绍现代数据库技术在处理大数据应用中的重要性,并探讨了一些流行的数据库解决方案及其在实际应用中的优势。
|
18天前
|
机器学习/深度学习 人工智能 数据可视化
基于Python的数据可视化技术在大数据分析中的应用
传统的大数据分析往往注重数据处理和计算,然而数据可视化作为一种重要的技术手段,在大数据分析中扮演着至关重要的角色。本文将介绍如何利用Python语言中丰富的数据可视化工具,结合大数据分析,实现更直观、高效的数据展示与分析。
|
22天前
|
消息中间件 SQL 分布式计算
大数据Hadoop生态圈体系视频课程
熟悉大数据概念,明确大数据职位都有哪些;熟悉Hadoop生态系统都有哪些组件;学习Hadoop生态环境架构,了解分布式集群优势;动手操作Hbase的例子,成功部署伪分布式集群;动手Hadoop安装和配置部署;动手实操Hive例子实现;动手实现GPS项目的操作;动手实现Kafka消息队列例子等
18 1
大数据Hadoop生态圈体系视频课程
|
25天前
|
存储 NoSQL 大数据
新型数据库技术在大数据分析中的应用与优势探究
随着大数据时代的到来,传统数据库技术已经无法满足海量数据处理的需求。本文将探讨新型数据库技术在大数据分析中的应用情况及其所带来的优势,为读者解析数据库领域的最新发展趋势。
|
26天前
|
存储 分布式计算 大数据
现代化数据库技术——面向大数据的分布式存储系统
传统的关系型数据库在面对大规模数据处理时遇到了诸多挑战,而面向大数据的分布式存储系统应运而生。本文将深入探讨现代化数据库技术中的分布式存储系统,包括其优势、工作原理以及在大数据领域的应用。
|
1月前
|
大数据 Java Go
Go语言在大数据处理中的核心技术与工具
【2月更文挑战第22天】本文深入探讨了Go语言在大数据处理领域的核心技术与工具。通过分析Go语言的并发编程模型、内存管理、标准库以及第三方工具库等方面,展现了其在大数据处理中的优势和实际应用。同时,本文也讨论了如何使用这些技术与工具构建高效、稳定的大数据处理系统,为开发者提供了有价值的参考。