路径规划综述
1. 背景介绍
路径规划是指在给定的环境中找到从起点到终点的最佳路径的过程。它在现实生活中有着广泛的应用,包括无人驾驶、物流配送、机器人导航等领域。随着人工智能和计算机技术的发展,路径规划技术也在不断地得到改进和应用。
路径规划中常见的算法可以分为两类:基于搜索的规划和基于采样的规划。
基于搜索的规划包括
- Breadth-First Searching (BFS)、
- Depth-First Searching (DFS)、
- Best-First Searching、
- Dijkstra’s、
- A*、
- Bidirectional A*、
- Anytime Repairing A*、
- Learning Real-time A* (LRTA*)、
- Real-time Adaptive A* (RTAA*)、
- Lifelong Planning A* (LPA*)、
- Dynamic A* (D*)、
- D* Lite 和
- Anytime D*
等算法。这些算法通过搜索图形结构来找到最短或最优的路径,其中 A* 是最为常用和经典的算法之一。
优缺点比较
- BFS(Breadth-First Searching)
优点:可找到最短路径;适用于无权图。
缺点:时间复杂度高;空间复杂度高。
- DFS(Depth-First Searching)
优点:空间复杂度低。
缺点:可能会陷入死循环;不一定能找到最短路径。
- Best-First Searching
优点:速度快;可以处理启发式信息。
缺点:可能会陷入局部最优解。
- Dijkstra’s
优点:可以找到最短路径;适用于有权图。
缺点:时间复杂度高;不能处理负权边。
- A*
优点:速度快;可以处理启发式信息;可以找到最短路径。
缺点:可能会陷入局部最优解。
- Bidirectional A*
优点:速度快;可以找到最短路径。
缺点:需要存储两个搜索树;可能会出现问题,例如搜索空间过大或搜索树生长过慢。
7.Anytime Repairing A*
优点:可以在任何时候停止搜索并返回最佳路径;可以处理启发式信息。
缺点:可能会陷入局部最优解。
- LRTA* (Learning Real-time A*)
优点:可以处理动态环境;可以处理启发式信息。
缺点:需要进行实时计算,可能会导致性能问题。
- RTAA* (Real-time Adaptive A*)
优点:可以处理动态环境;可以处理启发式信息。
缺点:需要进行实时计算,可能会导致性能问题。
- LPA* (Lifelong Planning A*)
优点:可以在不同的时间段进行搜索;可以处理启发式信息。
缺点:需要存储大量的搜索树。
class Node: def __init__(self, n): self.x = n[0] self.y = n[1] self.parent = None class RrtStarSmart: def __init__(self, x_start, x_goal, step_len, goal_sample_rate, search_radius, iter_max): self.x_start = Node(x_start) self.x_goal = Node(x_goal) self.step_len = step_len self.goal_sample_rate = goal_sample_rate self.search_radius = search_radius self.iter_max = iter_max self.env = env.Env() self.plotting = plotting.Plotting(x_start, x_goal) self.utils = utils.Utils() self.fig, self.ax = plt.subplots() self.delta = self.utils.delta self.x_range = self.env.x_range self.y_range = self.env.y_range self.obs_circle = self.env.obs_circle self.obs_rectangle = self.env.obs_rectangle self.obs_boundary = self.env.obs_boundary self.V = [self.x_start] self.beacons = [] self.beacons_radius = 2 self.direct_cost_old = np.inf self.obs_vertex = self.utils.get_obs_vertex() self.path = None def planning(self): n = 0 b = 2 InitPathFlag = False self.ReformObsVertex() for k in range(self.iter_max): if k % 200 == 0: print(k) if (k - n) % b == 0 and len(self.beacons) > 0: x_rand = self.Sample(self.beacons) else: x_rand = self.Sample() x_nearest = self.Nearest(self.V, x_rand) x_new = self.Steer(x_nearest, x_rand) if x_new and not self.utils.is_collision(x_nearest, x_new): X_near = self.Near(self.V, x_new) self.V.append(x_new) if X_near: # choose parent cost_list = [self.Cost(x_near) + self.Line(x_near, x_new) for x_near in X_near] x_new.parent = X_near[int(np.argmin(cost_list))] # rewire c_min = self.Cost(x_new) for x_near in X_near: c_near = self.Cost(x_near) c_new = c_min + self.Line(x_new, x_near) if c_new < c_near: x_near.parent = x_new if not InitPathFlag and self.InitialPathFound(x_new): InitPathFlag = True n = k if InitPathFlag: self.PathOptimization(x_new) if k % 5 == 0: self.animation() self.path = self.ExtractPath() self.animation() plt.plot([x for x, _ in self.path], [y for _, y in self.path], '-r') plt.pause(0.01) plt.show() def PathOptimization(self, node): direct_cost_new = 0.0 node_end = self.x_goal while node.parent: node_parent = node.parent if not self.utils.is_collision(node_parent, node_end): node_end.parent = node_parent else: direct_cost_new += self.Line(node, node_end) node_end = node node = node_parent if direct_cost_new < self.direct_cost_old: self.direct_cost_old = direct_cost_new self.UpdateBeacons() def UpdateBeacons(self): node = self.x_goal beacons = [] while node.parent: near_vertex = [v for v in self.obs_vertex if (node.x - v[0]) ** 2 + (node.y - v[1]) ** 2 < 9] if len(near_vertex) > 0: for v in near_vertex: beacons.append(v) node = node.parent self.beacons = beacons def ReformObsVertex(self): obs_vertex = [] for obs in self.obs_vertex: for vertex in obs: obs_vertex.append(vertex) self.obs_vertex = obs_vertex def Steer(self, x_start, x_goal): dist, theta = self.get_distance_and_angle(x_start, x_goal) dist = min(self.step_len, dist) node_new = Node((x_start.x + dist * math.cos(theta), x_start.y + dist * math.sin(theta))) node_new.parent = x_start return node_new def Near(self, nodelist, node): n = len(self.V) + 1 r = 50 * math.sqrt((math.log(n) / n)) dist_table = [(nd.x - node.x) ** 2 + (nd.y - node.y) ** 2 for nd in nodelist] X_near = [nodelist[ind] for ind in range(len(dist_table)) if dist_table[ind] <= r ** 2 and not self.utils.is_collision(node, nodelist[ind])] return X_near def Sample(self, goal=None): if goal is None: delta = self.utils.delta goal_sample_rate = self.goal_sample_rate if np.random.random() > goal_sample_rate: return Node((np.random.uniform(self.x_range[0] + delta, self.x_range[1] - delta), np.random.uniform(self.y_range[0] + delta, self.y_range[1] - delta))) return self.x_goal else: R = self.beacons_radius r = random.uniform(0, R) theta = random.uniform(0, 2 * math.pi) ind = random.randint(0, len(goal) - 1) return Node((goal[ind][0] + r * math.cos(theta), goal[ind][1] + r * math.sin(theta))) def SampleFreeSpace(self): delta = self.delta if np.random.random() > self.goal_sample_rate: return Node((np.random.uniform(self.x_range[0] + delta, self.x_range[1] - delta), np.random.uniform(self.y_range[0] + delta, self.y_range[1] - delta))) return self.x_goal
- D* (Dynamic A*)
优点:可以处理动态环境;可以处理启发式信息。
缺点:需要存储大量的搜索树。
- D* Lite
优点:可以处理动态环境;可以处理启发式信息;空间复杂度低。
缺点:可能会陷入局部最优解。
- Anytime D*
优点:可以在任何时候停止搜索并返回最佳路径;可以处理动态环境;可以处理启发式信息。
缺点:可能会陷入局部最优解。
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2
https://developer.aliyun.com/article/1446470?spm=a2c6h.13148508.setting.19.68a34f0egwu157