m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面

简介: m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.png
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着人工智能技术的快速发展,人脸识别技术已经广泛应用于身份验证、安全监控、智能支付等领域。活体人脸和视频人脸识别系统是其中的重要分支,旨在通过深度学习网络对人脸进行高效、准确的识别,并区分真实人脸与伪造的人脸。

   人脸检测是活体人脸和视频人脸识别系统的第一步,旨在从输入的图像或视频帧中定位并提取出人脸区域。常用的方法包括基于Haar特征的级联分类器、基于深度学习的人脸检测算法等。基于深度学习的方法通常采用卷积神经网络(CNN)来构建人脸检测模型。CNN通过多层卷积和池化操作提取图像的特征,并通过全连接层对特征进行分类和回归,从而得到人脸的位置和大小。

    活体检测旨在区分真实人脸与伪造的人脸,以防止人脸识别系统被攻击。常见的伪造手段包括照片、视频重放、3D面具等。活体检测的方法可以分为基于纹理的方法、基于动态的方法、基于深度学习的方法等。

    基于深度学习的方法通常利用CNN或循环神经网络(RNN)等模型来提取人脸的静态和动态特征,并通过分类器判断其是否为真实人脸。例如,可以利用CNN提取人脸的纹理特征,通过判断纹理的真实性来进行活体检测;或者利用RNN处理连续的视频帧,提取人脸的动态特征,如眨眼、张嘴等动作,来判断其是否为真实人脸。

数学公式表示为:
y = g(h(x))
其中,(y) 表示活体检测的结果,(h(x)) 表示提取的特征,(g(\cdot)) 表示分类器。通过训练和优化,可以得到适用于活体检测的深度学习模型。

3.MATLAB核心程序
```% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global Predicted_Label;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit2,'string',num2str(0));
load gnet.mat

[filename,pathname]=uigetfile({'.bmp;.jpg;.png;.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
im = imread(str);
imshow(im);
end
II(:,:,1) = imresize(im(:,:,1),[224,224]);
II(:,:,2) = imresize(im(:,:,2),[224,224]);
II(:,:,3) = imresize(im(:,:,3),[224,224]);
[Predicted_Label, Probability] = classify(net, II);
```

相关文章
|
29天前
|
机器学习/深度学习 算法 机器人
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
164 15
|
27天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
27天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
|
28天前
|
机器学习/深度学习 并行计算 算法
【图像分割】基于神经气体网络的图像分割与量化(Matlab代码实现)
【图像分割】基于神经气体网络的图像分割与量化(Matlab代码实现)
|
8月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
318 22
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
622 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
9月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
663 6
|
7月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
223 40
|
5月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
106 0
|
7月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
291 6

热门文章

最新文章