m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面

简介: m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.png
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着人工智能技术的快速发展,人脸识别技术已经广泛应用于身份验证、安全监控、智能支付等领域。活体人脸和视频人脸识别系统是其中的重要分支,旨在通过深度学习网络对人脸进行高效、准确的识别,并区分真实人脸与伪造的人脸。

   人脸检测是活体人脸和视频人脸识别系统的第一步,旨在从输入的图像或视频帧中定位并提取出人脸区域。常用的方法包括基于Haar特征的级联分类器、基于深度学习的人脸检测算法等。基于深度学习的方法通常采用卷积神经网络(CNN)来构建人脸检测模型。CNN通过多层卷积和池化操作提取图像的特征,并通过全连接层对特征进行分类和回归,从而得到人脸的位置和大小。

    活体检测旨在区分真实人脸与伪造的人脸,以防止人脸识别系统被攻击。常见的伪造手段包括照片、视频重放、3D面具等。活体检测的方法可以分为基于纹理的方法、基于动态的方法、基于深度学习的方法等。

    基于深度学习的方法通常利用CNN或循环神经网络(RNN)等模型来提取人脸的静态和动态特征,并通过分类器判断其是否为真实人脸。例如,可以利用CNN提取人脸的纹理特征,通过判断纹理的真实性来进行活体检测;或者利用RNN处理连续的视频帧,提取人脸的动态特征,如眨眼、张嘴等动作,来判断其是否为真实人脸。

数学公式表示为:
y = g(h(x))
其中,(y) 表示活体检测的结果,(h(x)) 表示提取的特征,(g(\cdot)) 表示分类器。通过训练和优化,可以得到适用于活体检测的深度学习模型。

3.MATLAB核心程序
```% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global Predicted_Label;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit2,'string',num2str(0));
load gnet.mat

[filename,pathname]=uigetfile({'.bmp;.jpg;.png;.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
im = imread(str);
imshow(im);
end
II(:,:,1) = imresize(im(:,:,1),[224,224]);
II(:,:,2) = imresize(im(:,:,2),[224,224]);
II(:,:,3) = imresize(im(:,:,3),[224,224]);
[Predicted_Label, Probability] = classify(net, II);
```

相关文章
|
13天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
6天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
21天前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
10天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
18天前
|
算法 数据安全/隐私保护
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
11天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
18天前
|
算法 安全 数据安全/隐私保护
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
|
20天前
|
算法 数据安全/隐私保护
基于分数Talbot效应的阵列光学涡旋产生matlab模拟与仿真
本程序基于分数Talbot效应,使用MATLAB(2013b版本)模拟与仿真光学涡旋阵列的生成,测试了正方形、旋转正方形和六边形三种阵列形状下的光学涡旋效果。分数Talbot效应是经典Talbot效应的推广,可精确控制衍射光场在任意距离处的重现,生成复杂光场分布,包括光学涡旋阵列。程序运行结果展示无水印,核心代码完整,适用于研究分数Talbot效应对光学涡旋的应用场景。