Python中gdal实现MODIS卫星遥感影像产品栅格数据读取处理与质量控制QC波段筛选掩膜

简介: Python中gdal实现MODIS卫星遥感影像产品栅格数据读取处理与质量控制QC波段筛选掩膜

  下载后,打开HDF文件可以看到,其具有很多波段,同时包括质量控制QC波段;且在FPARLAI波段中,像元数值方面还具有精度较低的像元值、填充值等无效数值。上述这些都需要我们在读取数据时加以识别、处理与筛选。

  由于MODIS系列遥感影像产品种类较多,不同产品之间的属性差异较大;因此建议大家每次使用一种MODIS产品时,都到官网查看其基本信息,有需要的话还可以在官网下载对应产品的用户手册。前面提到,本文所用产品为MCD15A3H,因此可以在其官网https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD15A3H#overview)查阅其基本信息或下载用户手册查看更为详细的产品属性。

  例如,下图所示即为用户手册中关于这一产品一景影像中波段分布情况与每一个波段具体信息的介绍表格;其中包括了波段含义、数据类型、填充值范围、有效值范围与缩放系数等关键参数,这些对于后期我们用gdal读取.hdf格式栅格文件而言具有重要意义。

  接下来,质量控制QC波段同样是执行栅格读取操作前有必要了解的信息。下图所示即为用户手册中关于这一产品一景影像中质量控制QC波段具体信息介绍的表格,其中包含了当前一景影像中FPARLAI产品的每一个像元所对应的算法、传感器、云覆盖等信息。这里需要注意的是:在MCD15A3H产品中是有两个质量控制QC波段的,这个是第一个QC,而第二个QC主要包括水陆区域、冰雪区域、气溶胶等信息,本文中暂且不涉及第二个QC。

  其中,由上表可知,QC波段的信息一共是由07共8个比特位(即Bit No.)组成,其中,由若干个比特位又可以组成Bit-word,每一个Bit-word就代表某一种QC波段信息。结合上图,我们可以对照下图这样一个实例进行理解:

  结合以上基本信息,我们已经对MCD15A3H产品的基本信息有了一定了解。接下来就可以进行栅格数据的读取与处理、筛选了。

  在这里需要注意的是,之前的两篇博客Python中gdal栅格遥感影像读取计算与写入处理及质量评估QA波段图层数据筛选掩膜https://blog.csdn.net/zhebushibiaoshifu/article/details/118878435)以及Python中gdal读取多波段HDF栅格遥感影像数据图层文件并依据像素绘制直方图
https://blog.csdn.net/zhebushibiaoshifu/article/details/119088429)已经对本次所要用到的大部分需求与代码加以实现并进行了详细讲解,这里就不再赘述。本文代码所实现功能与上述第一篇博客中的需求一致,唯一不同的是将GLASS产品更改为了MCD15A3H产品,且仅需对MCD15A3H产品的主算法像元加以做差计算(也就是筛选出MCD15A3H产品中第一个QC波段对应二进制数的第一位为0的像元,其它像元就不用参与差值计算了)。

  具体代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 25 14:57:45 2021
@author: fkxxgis
"""
import os
import copy
import numpy as np
from osgeo import gdal
rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/RT_LAI/"
mcd15_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/mcd15A3H/"
out_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/"
rt_file_list=os.listdir(rt_file_path)
for rt_file in rt_file_list:
    rt_file_split=rt_file.split("_")
    rt_hv=rt_file_split[3][:-4]
    mcd15_file_list=os.listdir(mcd15_file_path)
    for mcd15_file in mcd15_file_list:
        if rt_hv in mcd15_file:
            rt_file_tif_path=rt_file_path+rt_file
            mcd15_file_tif_path=mcd15_file_path+mcd15_file
            drt_out_file_path=out_file_path+"drt/"
            if not os.path.exists(drt_out_file_path):
                os.makedirs(drt_out_file_path)
            drt_out_file_tif_path=drt_out_file_path+rt_hv+".tif"
            eco_out_file_path=out_file_path+"eco/"
            if not os.path.exists(eco_out_file_path):
                os.makedirs(eco_out_file_path)
            eco_out_file_tif_path=eco_out_file_path+rt_hv+".tif"
            wat_out_file_path=out_file_path+"wat/"
            if not os.path.exists(wat_out_file_path):
                os.makedirs(wat_out_file_path)
            wat_out_file_tif_path=wat_out_file_path+rt_hv+".tif"
            tim_out_file_path=out_file_path+"tim/"
            if not os.path.exists(tim_out_file_path):
                os.makedirs(tim_out_file_path)
            tim_out_file_tif_path=tim_out_file_path+rt_hv+".tif"
            rt_raster=gdal.Open(rt_file_tif_path)
            rt_raster_array=rt_raster.ReadAsArray()
            rt_lai_array=rt_raster_array[0]
            rt_qa_array=rt_raster_array[1]
            rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array)
            rt_lai_array_fin=rt_lai_array_mask*0.001
            mcd15_raster=gdal.Open(mcd15_file_tif_path)
            mcd15_sub_dataset=mcd15_raster.GetSubDatasets()
            # for sub_dataset in mcd15_sub_dataset:
            #     print(sub_dataset[1])
            # print(mcd15_sub_dataset[1][1])
            # print(mcd15_sub_dataset[2][1])
            mcd15_sub_lai=gdal.Open(mcd15_sub_dataset[1][0])
            mcd15_sub_qc=gdal.Open(mcd15_sub_dataset[2][0])
            mcd15_lai_array=mcd15_sub_lai.ReadAsArray()
            mcd15_qc_array=mcd15_sub_qc.ReadAsArray()
            mcd15_lai_array_mask=np.where(mcd15_lai_array>248,np.nan,mcd15_lai_array)
            mcd15_lai_array_fin=mcd15_lai_array_mask*0.1
            rt_qa_array_bin=copy.copy(rt_qa_array)
            rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape
            for i in range(rt_qa_array_row):
                for j in range(rt_qa_array_col):
                    rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:]
            mcd15_qc_array_bin=copy.copy(mcd15_qc_array)
            mcd15_qc_array_row,mcd15_qc_array_col=mcd15_qc_array.shape
            for i in range(mcd15_qc_array_row):
                for j in range(mcd15_qc_array_col):
                    mcd15_qc_array_bin[i][j]="{:08b}".format(mcd15_qc_array[i][j])[-1:]
            mcd15_lai_main_array=np.where(mcd15_qc_array_bin==1,np.nan,mcd15_lai_array_fin)
            lai_dif=rt_lai_array_fin-mcd15_lai_main_array
            lai_dif=lai_dif*1000
            drt_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11),
                                       np.nan,lai_dif)
            eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111),
                                       np.nan,lai_dif)
            wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011),
                                       np.nan,lai_dif)
            tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111),
                                       np.nan,lai_dif)
            row=rt_raster.RasterYSize
            col=rt_raster.RasterXSize
            geotransform=rt_raster.GetGeoTransform()
            projection=rt_raster.GetProjection()
            # 输出为int格式后,所得结果中0就是NoData
            driver=gdal.GetDriverByName("Gtiff")
            out_drt_lai=driver.Create(drt_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_drt_lai.SetGeoTransform(geotransform)
            out_drt_lai.SetProjection(projection)
            out_drt_lai.GetRasterBand(1).WriteArray(drt_lai_dif_array)
            out_drt_lai=None
            driver=gdal.GetDriverByName("Gtiff")
            out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_eco_lai.SetGeoTransform(geotransform)
            out_eco_lai.SetProjection(projection)
            out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array)
            out_eco_lai=None
            driver=gdal.GetDriverByName("Gtiff")
            out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_wat_lai.SetGeoTransform(geotransform)
            out_wat_lai.SetProjection(projection)
            out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array)
            out_wat_lai=None
            driver=gdal.GetDriverByName("Gtiff")
            out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_tim_lai.SetGeoTransform(geotransform)
            out_tim_lai.SetProjection(projection)
            out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array)
            out_tim_lai=None
            print(rt_hv)

欢迎关注公众号/CSDN/知乎/微博:疯狂学习GIS


相关文章
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
427 62
使用Python实现深度学习模型:智能质量检测与控制
|
4月前
|
测试技术 数据安全/隐私保护 开发者
自动化测试的奥秘:如何用Selenium和Python提升软件质量
【9月更文挑战第35天】在软件开发的海洋中,自动化测试是那艘能引领我们穿越波涛的帆船。本文将揭开自动化测试的神秘面纱,以Selenium和Python为工具,展示如何构建一个简单而强大的自动化测试框架。我们将从基础出发,逐步深入到高级应用,让读者能够理解并实现自动化测试脚本,从而提升软件的质量与可靠性。
|
6月前
|
监控 BI Python
python django教学质量评价系统,实现学生、教师、管理员不同角色管理
本文介绍了一个基于Django框架开发的教学质量评价系统,该系统为学生、教师和管理员提供了不同角色的管理和评价功能,实现了教学质量的全方位评估和管理,旨在提高教育质量和促进教学改革。
124 5
python django教学质量评价系统,实现学生、教师、管理员不同角色管理
|
5月前
|
机器学习/深度学习 数据采集 存储
使用Python实现深度学习模型:智能医疗影像分析
使用Python实现深度学习模型:智能医疗影像分析
178 0
|
6月前
|
数据可视化 Serverless 数据格式
Python的GDAL求取栅格文件相互间的像素变化值
完成这一过程后,你将会得到一个包含像素差异值的新栅格文件,可以使用各种地理信息系统软件进行可视化和分析。
78 0
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
使用Python实现深度学习模型:智能医疗影像识别与诊断
【8月更文挑战第19天】 使用Python实现深度学习模型:智能医疗影像识别与诊断
121 0
|
8月前
|
定位技术 索引 Python
Python GDAL缩放栅格文件各波段数值
本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像文件的方法。 首先,看一下本文的具体需求。我们现有一个文件夹,其中含有大量.tif格式的遥感影像文件;其中,这些遥感影像文件均含有4个波段,每1个波段都表示其各自的反射率数值。而对于这些遥感影像文件,有的文件其各波段数值已经处于0至1的区间内(也就是反射率数据的正常数值区间),而有的文件其各波段数值则是还没有乘上缩放系数的(在本文中,缩放系数是0.0001)。
|
9月前
|
Python
Python批量求取多景栅格文件之间的像素差值
【2月更文挑战第18天】本文介绍基于Python语言,针对一个含有大量遥感影像栅格文件的文件夹,从其中第2景遥感影像开始,分别用每一景影像减去其前一景影像,从而求取二者的差值,并将每一个所得到的差值结果保存为新的一景遥感影像文件的方法~
100 2
Python批量求取多景栅格文件之间的像素差值
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。

热门文章

最新文章