【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

特征抽取 TF-IDF

TF-IDF是两个统计量的乘积,即词频(Term Frequency, TF)和逆向文档频率(Inverse Document Frequency, IDF)。它们各自有不同的计算方法。

TF是一个文档(去除停用词之后)中某个词出现的次数。它用来度量词对文档的重要程度,TF越大,该词在文档中就越重要。IDF逆向文档频率,是指文档集合中的总文档数除以含有该词的文档数,再取以10为底的对数。

TF-IDF的主要思想是如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为这个词或者短语具有很好的类别区分能力

具体实现步骤如下

(1)新建MAVEN项目,名称为spark-mlllib

(2)数据准备。新建一个文本文件,包含四行数据,内容如下:

hello mllib hello spark
goodBye spark
hello spark
goodBye spark

(3)新建Scala类,功能是计算单词的TF –IDF

创建TF计算实例

val hashingTF = new HashingTF()

//计算文档TF值

val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)

//创建IDF实例并计算

val idf = new IDF().fit(tf)

//计算TF_IDF词频

val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf)

统计结果如下

部分代码如下

package com.etc
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object TF_IDF {
  def main(args: Array[String]) {
    //创建环境变量
    val conf = new SparkConf()
      //设置本地化处理
      .setMaster("local")
      //设定名称
      .setAppName("TF_IDF") //设定名称
    val sc = new SparkContext(conf)
    //设置日志级别
    sc.setLogLevel("error")
    //读取数据并将句子分割成单词
    val documents = sc.textFile("a.txt")
      .map(_.split(" ").toSeq)
    println("分词的结果为:")
    documents.foreach(println)
    //创建TF计算实例
    val hashingTF = new HashingTF()
    //计算文档TF值
    val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)
    //创建IDF实例并计算
    val idf = new IDF().fit(tf)
    //计算TF_IDF词频
    val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf) //计算TF_IDF词频
    println("计算TF_IDF值:")
     tf_idfRDD.foreach(println)
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
1月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
534 0
|
3月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
361 4
|
1月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
SQL 分布式计算 Scala
[转载] 是时候学习真正的 spark 技术了
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要...
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
305 0
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
394 79
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
863 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
240 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
236 0
下一篇
oss云网关配置