【大数据技术】Spark MLlib机器学习线性回归、逻辑回归预测胃癌是否转移实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习线性回归、逻辑回归预测胃癌是否转移实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

线性回归

过工具类MLUtils加载LIBSVM格式样本文件,每一行的第一个是真实值y,有10个特征值x,用1:double,2:double分别标注,即建立需求函数:

y=a_1x_1+a_2x_2+a_3x_3+a_4x_4+…+a_10x_10

通过样本数据和梯度下降训练模型,找到10个产生比较合理的参数值(a_1到a_10)

回归结果如下

部分代码如下 需要全部代码和数据集请点赞关注收藏后评论区留言私信

 

package com.etc
import org.apache.spark.mllib.regression.{LabeledPoint,  LinearRegressionWithSGD}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object  LinearRegressionDemo {
  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf = new SparkConf().setMaster("local[4]").setAppName("LinearRegression")
    val sc = new SparkContext(conf)
    sc.setLogLevel("error")
    //加载数据样本
    val path = "data1.txt"
    //通过提供的工具类加载样本文件,每一行的第一个是y值,有10个特征值x,用1:double,2:double分别标注
    //即y=a1x1+a2x2+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+a8x8+a9x9+a10x10
    //-9.490009878824548 1:0.4551273600657362 2:0.36644694351969087 3:-0.38256108933468047 4:-0.4458430198517267 5:0.33109790358914726 6:0.8067445293443565 7:-0.2624341731773887 8:-0.44850386111659524 9:-0.07269284838169332 10:0.5658035575800715
    val data: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, path).cache()
    //迭代次数
    val numIterations = 100
    //梯度下降步长
    val stepSize = 0.00000001
    //训练模型
    val model = LinearRegressionWithSGD.train(data, numIterations, stepSize)
    //模型评估
    val valuesAndPreds = data.map { point =>
      //根据模型预测Label值
      val prediction = model.predict(point.features)
      println(s"【真实值】:${point.label}      ;【预测值】:${prediction}")
      (point.label, prediction)
    }
    //打印模型参数
    println("【参数值】:"+model.weights)
        //求均方误差
    val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2) }.mean()
    println("训练模型的均方误差为 = " + MSE)
    sc.stop()
  }
}

逻辑回归预测胃癌转移

建立随机梯度下降的回归模型预测胃癌是否转移,数据特征说明如下:

y:胃癌转移情况(有转移y=1;无转移y=0)  

x1:确诊时患者的年龄(岁)  

x2:肾细胞癌血管内皮生长因子(VEGF)其阳性表述由低到高共三个等级  

x3:肾细胞癌组织内微血管数(MVC)  

x4:肾癌细胞核组织学分级,由低到高共4级  

x5:肾癌细胞分期,由低到高共4期。

预测结果如下

部分代码如下 需要全部代码和数据集请点赞关注收藏后评论区留言私信

package com.etc
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionWithSGD}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
object LogisticRegressionDemo{
  def main(args: Array[String]): Unit = {
    //建立spark环境
    val conf = new SparkConf().setAppName("logisticRegression").setMaster("local")
    val sc  = new SparkContext(conf)
    sc.setLogLevel("error")
    //通过MLUtils工具类读取LIBSVM格式数据集
    val data  = MLUtils.loadLibSVMFile(sc , "wa.txt")
    //测试集和训练集按2:8的比例分
    val Array(traning,test) = data.randomSplit(Array(0.8,0.2),seed = 1L)
    println(traning.count ,test.count)
    traning.foreach(println)
    //建立LogisticRegressionWithLBFGS对象,设置分类数 2 ,run传入训练集开始训练,返回训练后的模型
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(2)
      .run(traning)
    //使用训练后的模型对测试集进行测试,同时打印标签和测试结果
    val labelAndPreds = test.map{ point =>
      val prediction = model.predict(point.features)
      (point.label, prediction)
    }
    labelAndPreds.foreach(println)
    println("推荐"+model.weights)
    val trainErr = labelAndPreds.filter( r => r._1 != r._2).count.toDouble / test.count
    println("容错率为trainErr: " +trainErr)
    val predictionAndLabels = test.map{                           //计算测试值
      case LabeledPoint(label,features) =>
        val prediction = model.predict(features)
        (prediction,label)                                              //存储测试值和预测值
    }
    val metrics = new MulticlassMetrics(predictionAndLabels)           //创建验证类
    val precision = metrics.precision                                   //计算验证值
    println("Precision= "+precision)
    val patient = Vectors.dense(Array(20,1,0.0,1,1))
    val d = model.predict(patient)
    print("预测的结果为:" + d)
    //计算患者可能性
    if(d == 1){
      println("患者的胃癌有几率转移。 ")
    } else {
      println("患者的胃癌没有几率转移 。")
    }
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
124 4
|
15天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
100 15
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
115 10
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
248 5
|
2月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
147 1
|
3月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
440 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
136 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
97 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
大数据与机器学习
大数据与机器学习紧密相关,前者指代海量、多样化且增长迅速的数据集,后者则是使计算机通过数据自动学习并优化的技术。大数据涵盖结构化、半结构化及非结构化的信息,其应用广泛,包括商业智能、金融和医疗保健等领域;而机器学习分为监督学习、无监督学习及强化学习,被应用于图像识别、自然语言处理和推荐系统等方面。二者相结合,能有效提升数据分析的准确性和效率,在智能交通、医疗及金融科技等多个领域创造巨大价值。
164 2
|
4月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
81 0