【大数据技术】Spark MLlib机器学习协同过滤电影推荐实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习协同过滤电影推荐实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

协同过滤————电影推荐

协同过滤是利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度。在协同过滤算法中有着两个分支,分别是基于群体用户的协同过滤(UserCF)和基于物品的协同过滤(ItemCF)。

在电影推荐系统中,通常分为针对用户推荐电影和针对电影推荐用户两种方式。若采用基于用户的推荐模型,则会利用相似用户的评级来计算对某个用户的推荐。若采用基于电影的推荐模型,则会依靠用户接触过的电影与候选电影之间的相似度来获得推荐。

在Spark MLlib实现了交替最小二乘(ALS)算法,它是机器学习的协同过滤式推荐算法,机器学习的协同过滤式推荐算法是通过观察所有用户给产品的评分来推断每个用户的喜好,并向用户推荐合适的产品

1:下载数据集

数据集网址

2:建立Scala类

推荐结果如下

部分代码如下 全部代码请点赞关注收藏后评论区留言私信

import java.util.Random
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd._
import org.apache.spark.mllib.recommendation.{ALS, Rating, MatrixFactorizationModel}
object MovieRecomment {
  def main(args: Array[String]): Unit = {
    //建立spark环境
   // val conf = new SparkConf().setAppName("movieRecomment")
    val conf = new SparkConf().setAppName("MovieLensALS").setMaster("local[4]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("error")
    //装载样本评分数据,其中最后一列Timestamp取除10的余数作为key,Rating为值,即(Int,Rating)
    val ratings = sc.textFile("ratings.dat").map {
      line =>
        val fields = line.split("::")
        //时间戳、用户编号、电影编号、评分
        (fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))
           }
    ratings.take(10).foreach { println }
    // 装载电影目录对照表(电影ID->电影标题)
    val movies = sc.textFile("movies.dat").map { line =>
      val fields = line.split("::")
        (fields(0).toInt, fields(1))
    }.collect.toMap
    //记录样本评分数、用户数、电影数
    val numRatings = ratings.count
    val numUsers = ratings.map(_._2.user).distinct.count
    val numMovies = ratings.map(_._2.product).distinct.count
     println("从" + numRatings + "记录中" + "分析了" + numUsers + "的人观看了" + numMovies + "部电影")
    //提取一个得到最多评分的电影子集(电影编号),以便进行评分启发
    //矩阵最为密集的部分
    val mostRatedMovieIds = ratings.map(_._2.product)
      .countByValue()
      .toSeq
      .sortBy(-_._2)
      .take(50) //取前50个
      .map(_._1) //获取他们的id
    val random = new Random(0)
    //从目前最火的电影中随机获取十部电影
    val selectedMovies = mostRatedMovieIds.filter(
      x => random.nextDouble() < 0.2).map(x => (x, movies(x))).toSeq
    //调用函数 elicitateRatings,引导或者启发评论,让用户打分
     val myRatings = elicitateRatings(selectedMovies)
    val myRatingsRDD = sc.parallelize(myRatings)
    //将评分数据分成训练集60%,验证集20%,测试集20%
    val numPartitions = 20
    //训练集
    val training = ratings.filter(x => x._1 < 6).values
      .union(myRatingsRDD).repartition(numPartitions)
      .persist
    //验证集
    val validation = ratings.filter(x => x._1 >= 6 && x._1 < 8).values
      .repartition(numPartitions).persist
    //测试集
    val test = ratings.filter(x => x._1 >= 8).values.persist
    val numTraining = training.count
    val numValidation = validation.count
    val numTest = test.count
    println("训练集数量:" + numTraining + ",验证集数量: " + numValidation + ", 测试集数量:" + numTest)
    //训练模型,并且在验证集上评估模型
    //模型中隐藏因子数
    val ranks = List(8, 12)
    //正则项的惩罚系数
    val lambdas = List(0.1, 10.0)
    //循环次数
    val numIters = List(10, 20)
    var bestModel: Option[MatrixFactorizationModel] = None
    var bestValidationRmse = Double.MaxValue
    var bestRank = 0
    var bestLambda = -1.0
    var bestNumIter = -1
    for (rank <- ranks; lambda <- lambdas; numIter <- numIters) {
      val model = ALS.train(training, rank, numIter, lambda)
        val validationRmse = computeRmse(model, validation, numValidation)
      println("RMSE (validation)=" + validationRmse + "for the model trained with rand =" + rank + ", lambda=" + lambda + ", and numIter= " + numIter + ".")
      if (validationRmse < bestValidationRmse) {
        bestModel = Some(model)
        bestValidationRmse = validationRmse
        bestRank = rank
        bestLambda = lambda
        bestNumIter = numIter
      }
    }
    //在测试集中 获得最佳模型
    val testRmse = computeRmse(bestModel.get, test, numTest)
    println("The best model was trained with rank=" + bestRank + " and lambda =" + bestLambda + ", and numIter =" + bestNumIter + ", and itsRMSE on the test set is" + testRmse + ".")
    //产生个性化推荐
    val myRateMoviesIds = myRatings.map(_.product).toSet
    val candidates = sc.parallelize(movies.keys.filter(!myRateMoviesIds.contains(_)).toSeq)
    val recommendations = bestModel.get.predict(candidates.map((0, _)))
      .collect()
      .sortBy((-_.rating))
      .take(10)
    var i = 1
    println("以下电影推荐给你")
    recommendations.foreach { r =>
      println("%2d".format(i) + ":" + movies(r.product))
      i += 1
    }
  }
  /**计算 均方根误差RMSE  */
  def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating], n: Long) = {
    val predictions: RDD[Rating] = model.predict(data.map(x => (x.user, x.product)))
    val predictionsAndRatings = predictions.map(x => ((x.user, x.product), x.rating))
      .join(data.map(x => ((x.user, x.product), x.rating)))
      .values
    math.sqrt(predictionsAndRatings.map(x => (x._1 - x._2) * (x._1 - x._2)).reduce(_ + _) / n)
  }
  /** 从命令行获取用户电影评级. */
  def elicitateRatings(movies: Seq[(Int, String)]) = {
    val prompt = "给以下电影评分(1——5分)"
    println(prompt)
    val ratings = movies.flatMap { x =>
      var rating: Option[Rating] = None
      var valid = false
      while (!valid) {
        print(x._2 + ": ")
        try {
          val r = Console.readInt
          if (r < 0 || r > 5) {
            println(prompt)
          } else {
            valid = true
            if (r > 0) {
              rating = Some(Rating(0, x._1, r))
            }
          }
        } catch {
          case e: Exception => println(prompt)
        }
      }
      rating match {
        case Some(r) => Iterator(r)
        case None => Iterator.empty
      }
    }
    if (ratings.isEmpty) {
      error("No rating provided!")
    } else {
      ratings
    }
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
107 1
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
75 5
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
95 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
59 0
|
2月前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
445 0
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
256 14
|
7月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
140 1
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
7月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
362 0