极智AI | 周易AIPU算法部署仿真测试

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 本教程详细记录了使用周易 AIPU 进行算法部署仿真测试的方法,带大家尝尝鲜。

本教程详细记录了使用周易 AIPU 进行算法部署仿真测试的方法,带大家尝尝鲜。

这里以 resnet_v1_101 为例(原谅我在边缘端用这么大的模型,这里纯粹就是为了跑通)。


1、安装 docker 镜像环境

# pull 镜像
docker pull zepan/zhouyi
# run 容器
docker run -it zepan/zhouyi  /bin/bash
# 如果要vscode远程开发的话,可以加端口
docker run -it -p 9999:22 -v /path/to/container:/path/to/host zepan/zhouyi  /bin/bash

验证容器环境是否正常:

cd ~/demos/tflite
# 执行仿真
./run_sim.sh

# 验证结果
python3 quant_predict.py


2、准备模型文件

2.1 下载预训练模型:

wget http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz

解压得到 resnet_v1_101.ckpt

tar zxvf resnet_v1_101_2016_08_28.tar.gz

2.2 export graph

vim export_graph.sh

加入以下内容

# export graph
python3 export_inference_graph.py \
    --alsologtostderr \
    --model_name=resnet_v1_101 \
    --image_size=224 \
    --labels_offset=1 \ 
    --output_file=tmp/resnet_v1_101_inf.pb

执行 ./export_graph.sh 后将在 tmp文件夹下生成 resnet_v1_101_inf.pb

2.3 freeze graph

vim freeze_graph.sh

加入以下内容:

# freeze graph
python3 freeze_graph.py \
    --input_graph=tmp/resnet_v1_101_inf.pb \
    --input_checkpoint=tmp/resnet_v1_101.ckpt \
    --input_binary=true --output_graph=tmp/resnet_v1_101_frozen.pb \
    --output_node_names= resnet_v1_101/predictions/Reshape_1

执行 ./freeze_graph.sh 后将在 tmp 文件夹下生成 resnet_v1_101_frozen.pb

通过如上三步操作,将生成如下模型文件,最终推理会用到的只有 resnet_v1_101_frozen.pb。


3、准备量化校准数据集

我这里没有自己去做数据集,使用了镜像提供的图片和标签。

制作量化校准数据集:

python3 preprocess_dataset.py

执行如上操作会生成 dataset.npy 和 label.npy


4、NN Compiler 配置

在有 resnet_v1_101_frozen.pb 和 校准数据集之后,就可以编辑 NN Compiler 配置文件了。

在 config 目录下创建 resnet_101_build.cfg 和 resnet_101_run.cfg 配置文件。

resnet_101_build.cfg 内容如下:

[Common]
mode=build
[Parser]
model_name = resnet_101
detection_postprocess = 
model_domain = image_classification
output = resnet_v1_101/predictions/Reshape
input_model = ./tmp/resnet_v1_101_frozen.pb
input = input
input_shape = [1,224,224,3]
[AutoQuantizationTool]
model_name = resnet_101
quantize_method = SYMMETRIC
ops_per_channel = DepthwiseConv
calibration_data = ./dataset/dataset.npy
calibration_label = ./dataset/label.npy
preprocess_mode = normalize
quant_precision=int8
reverse_rgb = False
label_id_offset = 0
[GBuilder]
outputs=./aipu.bin
profile= True
target=Z1_0701

resnet_101_run.cfg 内容如下:

[Common]
mode=run
[Parser]
model_name = resnet_101
detection_postprocess = 
model_domain = image_classification
output = resnet_v1_101/predictions/Reshape
input_model = ./tmp/resnet_v1_101_frozen.pb
input = input
input_shape = [1,224,224,3]
output_dir = ./
[AutoQuantizationTool]
model_name = resnet_101
quantize_method = SYMMETRIC
ops_per_channel = DepthwiseConv
calibration_data = ./dataset/dataset.npy
calibration_label = ./dataset/label.npy
preprocess_mode = normalize
quant_precision=int8
reverse_rgb = False
label_id_offset = 0
[GBuilder]
inputs=./model/input.bin
simulator=aipu_simulator_z1
outputs=output_resnet_101.bin
profile= True
target=Z1_0701


5、AIPU 仿真

执行build:

aipubuild confg/resnet_101_build.cfg

执行 run:

aipubuild config/resnet_101_run.cfg

得到存储模型输出数据的文件,后面验证模型数据结果会用到。


6、仿真结果比对

python3 quant_predict.py

看结果,TOP1 已经可以对的上了,细节和更深的东西等拿到板子再好好研究,先跑通再优秀~


这篇先这样了,在我的github上可以拿到我上述测试过程的代码,模型在这里,提取码:6666。


logo_show.gif

目录
打赏
0
0
0
0
7
分享
相关文章
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
198 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
96 24
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
920 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等