OpenCV+深度学习预训练模型,简单搞定图像识别 | 教程

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介:
本文来自AI新媒体量子位(QbitAI)

1b08f0283d953f27050da12a9c91f7641fd1c7ac

OpenCV是一个2000年发布的开源计算机视觉库,有进行物体识别、图像分割、人脸识别、动作识别等多种功能,可以在Linux、Windows、Android、Mac OS等操作系统上运行,以轻量级、高效著称,且提供多种语言接口。

而OpenCV最近一次版本更新,为我们带来了更好的深度学习支持,在OpenCV中使用预训练的深度学习模型变得非常容易。

pyimagesearch网站今天发布了一份用OpenCV+深度学习预训练模型做图像识别的教程,量子位编译整理如下:

最近,OpenCV 3.3刚刚正式发布,对深度学习(dnn模块)提供了更好的支持,dnn模块目前支持Caffe、TensorFlow、Torch、PyTorch等深度学习框架。

另外,新版本中使用预训练深度学习模型的API同时兼容C++和Python,让系列操作变得非常简便:

  • 从硬盘加载模型;
  • 对输入图像进行预处理;
  • 将图像输入网络,获取输出的分类。

当然,我们不能、也不该用OpenCV训练深度学习模型,但这个新版本让我们能把用深度学习框架训练好了的模型拿来,高效地用在OpenCV之中。

这篇文章就展示了如何用ImageNet上预训练的深度学习模型来识别图像。

OpenCV 3.3中的深度学习

自OpenCV 3.1版以来,dnn模块一直是opencv_contrib库的一部分,在3.3版中,它被提到了主仓库中。

用OpenCV 3.3,可以很好地利用深度学习预训练模型,将它们作为分类器。

新版OpenCV兼容以下热门网络架构:

  • AlexNet
  • GoogLeNet v1(也叫Inception-5h)
  • ResNet-34/50/…
  • SqueezeNet v1.1
  • VGG-based FCN
  • ENet
  • VGG-based SSD
  • MobileNet-based SSD

该模块的主要贡献者Rynikov Alexander,对这个模块有远大的计划,不过,他写的release notes是俄语的,感兴趣的同学请自行谷歌翻译着读:https://habrahabr.ru/company/intel/blog/333612/

我认为,dnn模块会对OpenCV社区产生很大的影响。

函数和框架

在OpenCV中使用深度学习预训练模型,首先要安装OpenCV 3.3,安装过程量子位就不再详细描述了……

下面是我们将用到的一些函数。

在dnn中从磁盘加载图片:

cv2.dnn.blobFromImage
cv2.dnn.blobFromImages

用“create”方法直接从各种框架中导出模型:

  • cv2.dnn.createCaffeImporter
  • cv2.dnn.createTensorFlowImporter
  • cv2.dnn.createTorchImporter

使用“读取”方法从磁盘直接加载序列化模型:

  • cv2.dnn.readNetFromCaffe
  • cv2.dnn.readNetFromTensorFlow
  • cv2.dnn.readNetFromTorch
  • cv2.dnn.readhTorchBlob

从磁盘加载完模型之后,可以用.forward方法来向前传播我们的图像,获取分类结果。

用OpenCV和深度学习给图像分类

接下来,我们来学习如何用Python、OpenCV和一个预训练过的Caffe模型来进行图像识别。

下文用到的深度学习模型是在ImageNet上预训练过的GoogleLeNet。GoogleLeNet出自Szegedy等人2014年的论文Going Deeper with Convolutions,详情见:https://arxiv.org/abs/1409.4842

首先,打开一个新文件,将其命名为deep_learning_with_opencv.py,插入如下代码,来导入我们需要的包:

63966a84c9469701715cc07243a1fb1e97cd7e54

然后拆解命令行参数:

5320ffb9854096fde703c93e39896fc966e80aa4

其中第8行ap = argparse.ArgumentParser()是用来创建参数解析器的,接下来的代码用来创建4个命令行参数:

  • —image:输入图像的路径;
  • —prototxt:Caffe部署prototxt的路径
  • —model:预训练的Caffe模型,例如网络权重等;
  • —labels:ImageNet标签的路径,例如syn-sets。

我们在创建参数之后,将它们解析并存在一个变量args中,供稍后使用。

接下来,加载输入图像和标签:

5f13b6004c89c9b2d11ab87edfd89ab4a37d5d94

第20行从磁盘加载了图像,第23行和24行加载了这些标签:

64b78abe812d2c80c1d5c45ce1e7a4e561a0d900

搞定了标签之后,我们来看一下dnn模块:

063d7b0e03be65ac2a1e6b64e3fc12d4ec4f6319

注意上面代码中的注释,我们使用cv2.dnn.blobFromImage执行mean subtraction来对输入图像进行归一化,从而产生一个已知的blob形状。

然后从磁盘加载我们的模型:

2270e3622cb910fc8d50d342c349458056cba453

我们用cv2.dnn.readNetFromCaffe来加载Caffe模型定义prototxt,以及预训练模型。

接下来,我们以blob为输入,在神经网络中完成一次正向传播:

a7566d32f3b47c5d7014b99c77e65a94fc01f822

请注意:我们不是在训练CNN,而是在使用预训练模型,因此只需要将blob从网络中传递过去,来获取结果,不需要反向传播。

最后,我们来为输入图像取出5个排名最高的预测结果:

21ca367f040e9b10021729dd3ed5a2691b848008

我们可以用NumPy来选取排名前5的结果,然后将他们显示出来:

15c00dd20ab09621f327d218957711b91431a531

分类结果

我们已经在OpenCV中用Python代码实现了深度学习图像识别,现在,可以拿一些图片来试一试。

打开你的终端,执行以下命令:

6c258506f17b27d1c372128130a809a04e306b08

就会得到这样的结果:

80d5e7bb73784a8a5b391abaee0681d57478746c

OpenCV和GoogleLeNet正确地认出了比格小猎犬,排名第一的结果是正确的,之后的4项结果相关度也很高。

在CPU上运行这个算法,得到结果也只需要不到一秒钟。

再来一张:

0703003ebdfac625899c05496911290392fc8aec

结果如下:

5bd135aea6821292c8d3a9afaec9732e343433c1

再来:

ad26c007863f5ea4f3cc8126c5df92592205b6f4

结果依然不错:

73ebcfef2fba5df28ef5ab203262ab5ea3bba6c1

最后一个例子:

f76b038a158010f94659d850c7e36363d2330b53

也认得不错:

776918e9e0183bf5366e6487656df0dbaabc3f08

相关链接

教程原文:
http://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/

相关代码:
在原文下填邮箱获取,或在量子位公众号(QbitAI)对话界面回复“OpenCV”获取。

本文作者: Adrian Rosebrock
原文发布时间:2017-08-22
相关文章
|
1天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
15 5
|
4天前
|
机器学习/深度学习 人工智能 计算机视觉
探索深度学习在图像识别中的突破与挑战##
本文深入探讨了深度学习技术在图像识别领域的最新进展,重点分析了卷积神经网络(CNN)作为核心技术的演变历程,从LeNet到AlexNet,再到VGG、ResNet等先进架构的创新点。不同于传统摘要形式,本文摘要旨在通过一系列关键里程碑事件,勾勒出深度学习推动图像识别技术飞跃的轨迹,同时指出当前面临的主要挑战,如模型泛化能力、计算资源依赖性及数据偏见问题,为读者提供一个宏观且具体的发展脉络概览。 ##
24 7
|
2天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
2天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
4天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
1天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
7 1
|
3天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
3天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
3天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
13 2