字节奋战8年,回头一看只剩下这份1857页的算法笔记了

简介: 计算机专业的应届生想进大厂做开发有多难呢?

计算机专业的应届生想进大厂做开发有多难呢?


我们来看一组网上的数据:


据统计,互联网公司笔试是最难的关卡之一,平均通过率只有 10%~20%。滴滴出行笔试通过率为 18.2%;腾讯秋招笔试通过率不足 15%;字节跳动通过率不足 25%...

你要知道的是,即便好不容易过淘汰率 50% 笔试,还有淘汰率 60% 的面试在等你,而且面试也有好几轮:一面群面→二面组长面→三面部门经理面→四面总监面→五面 HR 面→ Offer。

看完这个,不知道有多少同学的心已经凉得跟现在东北的气温一样了。


但是,你也要意识到。大多数人的危机其实也是你的机会。


由于工作关系,我经常接触各个大厂的 HR 和技术面试官。他们跟我说,其实不少技术还不错的应届生,是倒在了算法面试这个环节,但凡面试前一俩月多花点时间刷刷算法题,也不至于这样。


其实,面试前要多刷题,这事儿大家都知道。但问题在于,很多人自己硬着头皮刷俩星期,总是没啥效果,于是就知难而退了。还有一部分同学呢,是上学的时候没怎么好好学数据结构与算法这门课,基础薄弱,现在临时抱佛脚,也无济于事。


总结一下的话,其实就两点:

  1. 算法与数据结构没学好或者没好好学,补起来困难重重;
  2. 刷题方法不对,解题思路也不对,效率缓慢,容易放弃。

大纲对应刷题视频教程:可以点击此处来获取就可以了!

1211道刷题实录内容,包括 双子针、动态规划、二分查找、贪心算法、深度优先搜索、字符串、递归、字典树、排序、链表等相关专题内容。图文并茂,附有刷题答案源码。

刷题任务的题目,是根据题目的类型来汇总的,总结了八个类别,每个类别下面也总结了5个左右的题型,帮助大家分门别类的突破,所以刷起来相对会更有重点和针对性。如果从头到尾的刷,每周按顺序刷42题,很容易让自己坚持不下来,也会觉得很枯燥。所以在制定计划的时候可以让这个计划变得更“有趣"和针对性,让它看起来更容易实现一点,才会更容易坚持。

排序和数据结构学习笔记

  1. 冒泡排序
  2. 选择排序
  3. 插入排序
  4. 快速排序
  5. 归并排序
  6. 希尔排序
  7. 堆排序
  8. 基数排序(桶排序)
  9. 递归
  10. 链表
  11. 队列
  12. 二叉树

程序员代码面试指南IT名企算法与数据结构题目最优解

  1. 栈和队列
  2. 链表问题
  3. 二叉树问题
  4. 递归和动态规划
  5. 字符串问题
  6. 大数据和空间限制
  7. 位运算
  8. 数组和矩阵问题
  9. 其他题目

算法近2000页刷题面试指南.pdf需要的朋友可以点击此处来获取就可以了!

相关文章
|
2月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
53 0
|
2月前
|
算法 API 计算机视觉
人脸识别笔记(一):通过yuface调包(参数量54K更快更小更准的算法) 来实现人脸识别
本文介绍了YuNet系列人脸检测算法的优化和使用,包括YuNet-s和YuNet-n,以及通过yuface库和onnx在不同场景下实现人脸检测的方法。
83 1
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
80 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
19 1
|
2月前
|
数据可视化 搜索推荐 Python
Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序
这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。
22 0
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
34 0
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)
❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)
29 0
|
3天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
110 80
|
20小时前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
22天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

热门文章

最新文章