10 机器学习 - KNN分类算法原理

简介: 10 机器学习 - KNN分类算法原理

1 概述

K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。(机器学习,算法本身不是最难的,最难的是:1、数学建模:把业务中的特性抽象成向量的过程;2、选取适合模型的数据样本。这两个事都不是简单的事。算法反而是比较简单的事。)

KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。

本质上,KNN算法就是用距离来衡量样本之间的相似度

2 算法图示

从训练集中找到和新数据最接近的k条记录,然后根据多数类来决定新数据类别。

算法涉及3个主要因素:

1) 训练数据集
2) 距离或相似度的计算衡量
3) k的大小

算法描述:

  1. 已知两类“先验”数据,分别是蓝方块和红三角,他们分布在一个二维空间中
  2. 有一个未知类别的数据(绿点),需要判断它是属于“蓝方块”还是“红三角”类
  3. 考察离绿点最近的3个(或k个)数据点的类别,占多数的类别即为绿点判定类别

3 算法要点

3.1 计算步骤

计算步骤如下:

1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

3.2 相似度的衡量

  • 距离越近应该意味着这两个点属于一个分类的可能性越大。
    但,距离不能代表一切,有些数据的相似度衡量并不适合用距离
  • 相似度衡量方法:包括欧式距离、夹角余弦等。

简单应用中,一般使用欧氏距离,但对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适

3.3 类别的判定

  • 简单投票法:少数服从多数,近邻中哪个类别的点最多就分为该类。
  • 加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

4 算法不足之处

4.1 样本不平衡容易导致结果错误

  • 如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。
  • 改善方法:对此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。

4.2 计算量较大

  • 因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。
  • 改善方法:事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

该方法比较适用于样本容量比较大的类域的分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
8天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
16天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
38 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
24天前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
21天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
18天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
21 0
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章