【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。

近期,阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。

文本到图像合成 (TIS) 已成为计算机视觉与自然语言处理 (NLP) 交叉领域的重要前沿,其能够根据文本描述生成视觉上引人注目的图像。基于文本引导的图像编辑任务使用户能够通过简单的文字描述来指导图像的修改,无需使用复杂的图像编辑软件或具备专业知识即可实现编辑效果。其中 Traing-free 的文本引导图像编辑 (TIE) 已成为一个重要的研究方向,利用预训练的 TIS 模型,直接通过文本提示来编辑图像,用户可以直接输入文本,对图像进行多种编辑操作,包括颜色变化、物体的添加或去除、风格转换等。这种交互式编辑方式显著降低了图像编辑的门槛,使得创意表达变得更加便捷和个性化。
尽管当前的 TIE 算法取得了显著进展,但它们仍存在一些局限性。如图1所示,现有TIE方法在编辑多个对象时面临挑战。多对象编辑的复杂性会导致编辑对象丢失(例如,丢失一个苹果)、属性缺失(例如,斑点)和背景保留不完整等问题。
image.png

图1. 图像编辑的效果对比以及我们提出方法的结果

在本文中,我们提出了 VICTORIA 编辑算法,它利用语言知识来解决在对象场景编辑中因缺失目标(如对象、属性和背景)而导致的问题。VICTORIA 通过分析输入编辑文本中单词之间的依存关系,并将这种关系反映在注意层的中间表示中,从而修正并生成目标图像。图2展示了 VICTORIA 的整体框架。首先,我们通过控制自注意机制来确保原始图像和编辑后图像之间的空间一致性。其次,VICTORIA 分析输入编辑文本中单词之间的依存关系,并在生成目标编辑图像的过程中主动干预交叉注意力图,从而提升目标编辑区域的生成结果。最后,VICTORIA 通过交叉注意图进行图像部分掩码,有效保留原始图像中无需被编辑的区域。
image.png

图 2:VICTORIA 在对图像进行编辑的过程示意图


VICTORIA 伪代码如下:
image.png

图 3:VICTORIA 在合成图像编辑和真实图像编辑场景下的伪代码


图4展示了 VICTORIA 的编辑结果,它成功地修改了原始图像中多个物体的各种属性、风格、场景和类别。
image.png

图 4:VICTORIA 编辑结果示例


图5对比展示了 VICTORIA 与其他一些 SOTA 图像编辑技术的效果。无论是对真实照片还是合成图像,VICTORIA 均展现出了高效的编辑能力。在所有的案例中,VICTORIA 都能够实现与描述提示高度一致的精细编辑,同时最大限度地保留了原图的结构细节。
image.png

图 5:VICTORIA 与其他编辑方法的对比


为了更好地服务开源社区,这一算法的源代码已经贡献在自然语言处理算法框架 EasyNLP 中,欢迎各界从业人员和研究者使用。
阿里云人工智能平台 PAI 长期招聘正式员工/实习生。团队专注于深度学习算法研究与应用,重点聚焦大语言模型和多模态 AIGC 大模型的应用算法研究和应用。简历投递和咨询:chengyu.wcy@alibaba-inc.com。

论文信息

论文名字:Attentive Linguistic Tracking in Diffusion Models for Training-free Text-guided Image Editing

论文作者:刘冰雁、汪诚愚、黄俊、贾奎

论文pdf链接https://openreview.net/pdf?id=efTur2naAS

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
5月前
|
机器学习/深度学习 人工智能 算法
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
PaperCoder是一种基于多智能体LLM框架的工具,可自动将机器学习研究论文转化为代码库。它通过规划、分析和生成三个阶段,系统性地实现从论文到代码的转化,解决当前研究中代码缺失导致的可复现性问题。实验表明,PaperCoder在自动生成高质量代码方面显著优于基线方法,并获得专家高度认可。这一工具降低了验证研究成果的门槛,推动科研透明与高效。
395 19
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
|
5月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
253 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
5月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
1180 12
|
17天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
127 3
|
22天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
11天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
11天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
22天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
139 14

热门文章

最新文章

相关产品

  • 人工智能平台 PAI