【机器学习】揭秘深度学习优化算法:加速训练与提升性能

简介: 【机器学习】揭秘深度学习优化算法:加速训练与提升性能

学习目标

🍀 知道常见优化方法的问题及解决方案

传统的梯度下降优化算法中,可能会碰到以下情况:

碰到平缓区域,梯度值较小,参数优化变慢 碰到 “鞍点” ,梯度为 0,参数无法优化 碰到局部最小值 对于这些问题, 出现了一些对梯度下降算法的优化方法.

例如:Momentum、AdaGrad、RMSprop、Adam 等.

🍔 指数加权平均

我们最常见的算数平均指的是将所有数加起来除以数的个数,每个数的权重是相同的。加权平均指的是给每个数赋予不同的权重求得平均数。移动平均数,指的是计算最近邻的 N 个数来获得平均数。

指数移动加权平均则是参考各数值,并且各数值的权重都不同,距离越远的数字对平均数计算的贡献就越小(权重较小),距离越近则对平均数的计算贡献就越大(权重越大)。

比如:明天气温怎么样,和昨天气温有很大关系,而和一个月前的气温关系就小一些。

计算公式可以用下面的式子来表示:

  1. St 表示指数加权平均值;
  2. Yt 表示 t 时刻的值;
  3. β 调节权重系数,该值越大平均数越平缓。

我们接下来通过一段代码来看下结果,我们随机产生进 30 天的气温数据:

import torch
import matplotlib.pyplot as plt
ELEMENT_NUMBER = 30
# 1. 实际平均温度
def test01():
    # 固定随机数种子
    torch.manual_seed(0)
    # 产生30天的随机温度
    temperature = torch.randn(size=[ELEMENT_NUMBER,]) * 10
    print(temperature)
    # 绘制平均温度
    days = torch.arange(1, ELEMENT_NUMBER + 1, 1)
    plt.plot(days, temperature, color='r')
    plt.scatter(days, temperature)
    plt.show()
# 2. 指数加权平均温度
def test02(beta=0.9):
    # 固定随机数种子
    torch.manual_seed(0)
    # 产生30天的随机温度
    temperature = torch.randn(size=[ELEMENT_NUMBER,]) * 10
    print(temperature)
    exp_weight_avg = []
    for idx, temp in enumerate(temperature, 1):
        # 第一个元素的的 EWA 值等于自身
        if idx == 1:
            exp_weight_avg.append(temp)
            continue
        # 第二个元素的 EWA 值等于上一个 EWA 乘以 β + 当前气氛乘以 (1-β)
        new_temp = exp_weight_avg[idx - 2] * beta + (1 - beta) * temp
        exp_weight_avg.append(new_temp)
    days = torch.arange(1, ELEMENT_NUMBER + 1, 1)
    plt.plot(days, exp_weight_avg, color='r')
    plt.scatter(days, temperature)
    plt.show()
if __name__ == '__main__':
    test01()
    test02(0.5)
    test02(0.9)

程序结果如下:

从程序运行结果可以看到:

指数加权平均绘制出的气氛变化曲线更加平缓; β 的值越大,则绘制出的折线越加平缓; β 值一般默认都是 0.9.

🍔 Momentum

当梯度下降碰到 “峡谷” 、”平缓”、”鞍点” 区域时, 参数更新速度变慢. Momentum 通过指数加权平均法,累计历史梯度值,进行参数更新,越近的梯度值对当前参数更新的重要性越大。

梯度计算公式:Dt = β * St-1 + (1- β) * Dt

  1. St-1 表示历史梯度移动加权平均值
  2. wt 表示当前时刻的梯度值
  3. β 为权重系数

咱们举个例子,假设:权重 β 为 0.9,例如:

第一次梯度值:s1 = d1 = w1 第二次梯度值:s2 = 0.9 + s1 + d2 * 0.1 第三次梯度值:s3 = 0.9 * s2 + d3 * 0.1 第四次梯度值:s4 = 0.9 * s3 + d4 * 0.1

  1. w 表示初始梯度
  2. d 表示当前轮数计算出的梯度值
  3. s 表示历史梯度值

梯度下降公式中梯度的计算,就不再是当前时刻 t 的梯度值,而是历史梯度值的指数移动加权平均值。公式修改为:

那么,Monmentum 优化方法是如何一定程度上克服 “平缓”、”鞍点”、”峡谷” 的问题呢?

当处于鞍点位置时,由于当前的梯度为 0,参数无法更新。但是 Momentum 动量梯度下降算法已经在先前积累了一些梯度值,很有可能使得跨过鞍点。

由于 mini-batch 普通的梯度下降算法,每次选取少数的样本梯度确定前进方向,可能会出现震荡,使得训练时间变长。Momentum 使用移动加权平均,平滑了梯度的变化,使得前进方向更加平缓,有利于加快训练过程。一定程度上有利于降低 “峡谷” 问题的影响。

峡谷问题:就是会使得参数更新出现剧烈震荡.

Momentum 算法可以理解为是对梯度值的一种调整,我们知道梯度下降算法中还有一个很重要的学习率,Momentum 并没有学习率进行优化。

🍔 AdaGrad

AdaGrad 通过对不同的参数分量使用不同的学习率,AdaGrad 的学习率总体会逐渐减小,这是因为 AdaGrad 认为:在起初时,我们距离最优目标仍较远,可以使用较大的学习率,加快训练速度,随着迭代次数的增加,学习率逐渐下降。

其计算步骤如下:

  1. 初始化学习率 α、初始化参数 θ、小常数 σ = 1e-6
  2. 初始化梯度累积变量 s = 0
  3. 从训练集中采样 m 个样本的小批量,计算梯度 g
  4. 累积平方梯度 s = s + g ⊙ g,⊙ 表示各个分量相乘

学习率 α 的计算公式如下:

  1. 参数更新公式如下:

  1. 重复 2-7 步骤.

AdaGrad 缺点是可能会使得学习率过早、过量的降低,导致模型训练后期学习率太小,较难找到最优解。

🍔 RMSProp

RMSProp 优化算法是对 AdaGrad 的优化. 最主要的不同是,其使用指数移动加权平均梯度替换历史梯度的平方和。其计算过程如下:

  1. 初始化学习率 α、初始化参数 θ、小常数 σ = 1e-6
  2. 初始化参数 θ
  3. 初始化梯度累计变量 s
  4. 从训练集中采样 m 个样本的小批量,计算梯度 g
  5. 使用指数移动平均累积历史梯度,公式如下:

  1. 学习率 α 的计算公式如下:

  1. 参数更新公式如下:

RMSProp 与 AdaGrad 最大的区别是对梯度的累积方式不同,对于每个梯度分量仍然使用不同的学习率。

RMSProp 通过引入衰减系数 β,控制历史梯度对历史梯度信息获取的多少. 被证明在神经网络非凸条件下的优化更好,学习率衰减更加合理一些。

需要注意的是:AdaGrad 和 RMSProp 都是对于不同的参数分量使用不同的学习率,如果某个参数分量的梯度值较大,则对应的学习率就会较小,如果某个参数分量的梯度较小,则对应的学习率就会较大一些

🍔 Adam

Momentum 使用指数加权平均计算当前的梯度值、AdaGrad、RMSProp 使用自适应的学习率,Adam 结合了 Momentum、RMSProp 的优点,使用:移动加权平均的梯度和移动加权平均的学习率。使得能够自适应学习率的同时,也能够使用 Momentum 的优点。

🍔 小节

本小节主要学习了常见的一些对普通梯度下降算法的优化方法,主要有 Momentum、AdaGrad、RMSProp、Adam 等优化方法,其中 Momentum 使用指数加权平均参考了历史梯度,使得梯度值的变化更加平缓。AdaGrad 则是针对学习率进行了自适应优化,由于其实现可能会导致学习率下降过快,RMSProp 对 AdaGrad 的学习率自适应计算方法进行了优化,Adam 则是综合了 Momentum 和 RMSProp 的优点,在很多场景下,Adam 的表示都很不错。

💘若能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼期待您的宝贵意见,让我们共同进步共同成长🐼

相关文章
|
24天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
16天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
20天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2577 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
18天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
3天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
2天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
163 2
|
20天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1576 16
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
22天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
977 14
|
4天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
221 2
|
17天前
|
人工智能 开发框架 Java
重磅发布!AI 驱动的 Java 开发框架:Spring AI Alibaba
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发。同时,提供了完整的开源配套,包括可观测、网关、消息队列、配置中心等。
734 9