【机器学习】揭秘深度学习优化算法:加速训练与提升性能

简介: 【机器学习】揭秘深度学习优化算法:加速训练与提升性能

学习目标

🍀 知道常见优化方法的问题及解决方案

传统的梯度下降优化算法中,可能会碰到以下情况:

碰到平缓区域,梯度值较小,参数优化变慢 碰到 “鞍点” ,梯度为 0,参数无法优化 碰到局部最小值 对于这些问题, 出现了一些对梯度下降算法的优化方法.

例如:Momentum、AdaGrad、RMSprop、Adam 等.

🍔 指数加权平均

我们最常见的算数平均指的是将所有数加起来除以数的个数,每个数的权重是相同的。加权平均指的是给每个数赋予不同的权重求得平均数。移动平均数,指的是计算最近邻的 N 个数来获得平均数。

指数移动加权平均则是参考各数值,并且各数值的权重都不同,距离越远的数字对平均数计算的贡献就越小(权重较小),距离越近则对平均数的计算贡献就越大(权重越大)。

比如:明天气温怎么样,和昨天气温有很大关系,而和一个月前的气温关系就小一些。

计算公式可以用下面的式子来表示:

  1. St 表示指数加权平均值;
  2. Yt 表示 t 时刻的值;
  3. β 调节权重系数,该值越大平均数越平缓。

我们接下来通过一段代码来看下结果,我们随机产生进 30 天的气温数据:

import torch
import matplotlib.pyplot as plt
ELEMENT_NUMBER = 30
# 1. 实际平均温度
def test01():
    # 固定随机数种子
    torch.manual_seed(0)
    # 产生30天的随机温度
    temperature = torch.randn(size=[ELEMENT_NUMBER,]) * 10
    print(temperature)
    # 绘制平均温度
    days = torch.arange(1, ELEMENT_NUMBER + 1, 1)
    plt.plot(days, temperature, color='r')
    plt.scatter(days, temperature)
    plt.show()
# 2. 指数加权平均温度
def test02(beta=0.9):
    # 固定随机数种子
    torch.manual_seed(0)
    # 产生30天的随机温度
    temperature = torch.randn(size=[ELEMENT_NUMBER,]) * 10
    print(temperature)
    exp_weight_avg = []
    for idx, temp in enumerate(temperature, 1):
        # 第一个元素的的 EWA 值等于自身
        if idx == 1:
            exp_weight_avg.append(temp)
            continue
        # 第二个元素的 EWA 值等于上一个 EWA 乘以 β + 当前气氛乘以 (1-β)
        new_temp = exp_weight_avg[idx - 2] * beta + (1 - beta) * temp
        exp_weight_avg.append(new_temp)
    days = torch.arange(1, ELEMENT_NUMBER + 1, 1)
    plt.plot(days, exp_weight_avg, color='r')
    plt.scatter(days, temperature)
    plt.show()
if __name__ == '__main__':
    test01()
    test02(0.5)
    test02(0.9)

程序结果如下:

从程序运行结果可以看到:

指数加权平均绘制出的气氛变化曲线更加平缓; β 的值越大,则绘制出的折线越加平缓; β 值一般默认都是 0.9.

🍔 Momentum

当梯度下降碰到 “峡谷” 、”平缓”、”鞍点” 区域时, 参数更新速度变慢. Momentum 通过指数加权平均法,累计历史梯度值,进行参数更新,越近的梯度值对当前参数更新的重要性越大。

梯度计算公式:Dt = β * St-1 + (1- β) * Dt

  1. St-1 表示历史梯度移动加权平均值
  2. wt 表示当前时刻的梯度值
  3. β 为权重系数

咱们举个例子,假设:权重 β 为 0.9,例如:

第一次梯度值:s1 = d1 = w1 第二次梯度值:s2 = 0.9 + s1 + d2 * 0.1 第三次梯度值:s3 = 0.9 * s2 + d3 * 0.1 第四次梯度值:s4 = 0.9 * s3 + d4 * 0.1

  1. w 表示初始梯度
  2. d 表示当前轮数计算出的梯度值
  3. s 表示历史梯度值

梯度下降公式中梯度的计算,就不再是当前时刻 t 的梯度值,而是历史梯度值的指数移动加权平均值。公式修改为:

那么,Monmentum 优化方法是如何一定程度上克服 “平缓”、”鞍点”、”峡谷” 的问题呢?

当处于鞍点位置时,由于当前的梯度为 0,参数无法更新。但是 Momentum 动量梯度下降算法已经在先前积累了一些梯度值,很有可能使得跨过鞍点。

由于 mini-batch 普通的梯度下降算法,每次选取少数的样本梯度确定前进方向,可能会出现震荡,使得训练时间变长。Momentum 使用移动加权平均,平滑了梯度的变化,使得前进方向更加平缓,有利于加快训练过程。一定程度上有利于降低 “峡谷” 问题的影响。

峡谷问题:就是会使得参数更新出现剧烈震荡.

Momentum 算法可以理解为是对梯度值的一种调整,我们知道梯度下降算法中还有一个很重要的学习率,Momentum 并没有学习率进行优化。

🍔 AdaGrad

AdaGrad 通过对不同的参数分量使用不同的学习率,AdaGrad 的学习率总体会逐渐减小,这是因为 AdaGrad 认为:在起初时,我们距离最优目标仍较远,可以使用较大的学习率,加快训练速度,随着迭代次数的增加,学习率逐渐下降。

其计算步骤如下:

  1. 初始化学习率 α、初始化参数 θ、小常数 σ = 1e-6
  2. 初始化梯度累积变量 s = 0
  3. 从训练集中采样 m 个样本的小批量,计算梯度 g
  4. 累积平方梯度 s = s + g ⊙ g,⊙ 表示各个分量相乘

学习率 α 的计算公式如下:

  1. 参数更新公式如下:

  1. 重复 2-7 步骤.

AdaGrad 缺点是可能会使得学习率过早、过量的降低,导致模型训练后期学习率太小,较难找到最优解。

🍔 RMSProp

RMSProp 优化算法是对 AdaGrad 的优化. 最主要的不同是,其使用指数移动加权平均梯度替换历史梯度的平方和。其计算过程如下:

  1. 初始化学习率 α、初始化参数 θ、小常数 σ = 1e-6
  2. 初始化参数 θ
  3. 初始化梯度累计变量 s
  4. 从训练集中采样 m 个样本的小批量,计算梯度 g
  5. 使用指数移动平均累积历史梯度,公式如下:

  1. 学习率 α 的计算公式如下:

  1. 参数更新公式如下:

RMSProp 与 AdaGrad 最大的区别是对梯度的累积方式不同,对于每个梯度分量仍然使用不同的学习率。

RMSProp 通过引入衰减系数 β,控制历史梯度对历史梯度信息获取的多少. 被证明在神经网络非凸条件下的优化更好,学习率衰减更加合理一些。

需要注意的是:AdaGrad 和 RMSProp 都是对于不同的参数分量使用不同的学习率,如果某个参数分量的梯度值较大,则对应的学习率就会较小,如果某个参数分量的梯度较小,则对应的学习率就会较大一些

🍔 Adam

Momentum 使用指数加权平均计算当前的梯度值、AdaGrad、RMSProp 使用自适应的学习率,Adam 结合了 Momentum、RMSProp 的优点,使用:移动加权平均的梯度和移动加权平均的学习率。使得能够自适应学习率的同时,也能够使用 Momentum 的优点。

🍔 小节

本小节主要学习了常见的一些对普通梯度下降算法的优化方法,主要有 Momentum、AdaGrad、RMSProp、Adam 等优化方法,其中 Momentum 使用指数加权平均参考了历史梯度,使得梯度值的变化更加平缓。AdaGrad 则是针对学习率进行了自适应优化,由于其实现可能会导致学习率下降过快,RMSProp 对 AdaGrad 的学习率自适应计算方法进行了优化,Adam 则是综合了 Momentum 和 RMSProp 的优点,在很多场景下,Adam 的表示都很不错。

💘若能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼期待您的宝贵意见,让我们共同进步共同成长🐼

相关文章
|
4天前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
3天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
12天前
|
机器学习/深度学习 人工智能 算法
深度学习用于求解车间调度问题,性能如何呢?
基于深度学习来求解车间调度问题,不仅求解速度快,求解的质量也越来越好
56 24
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
11天前
|
数据采集 人工智能 编解码
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
31 9
|
9天前
|
机器学习/深度学习 存储 算法
量子算法的设计与优化:迈向量子计算的未来
量子算法的设计与优化:迈向量子计算的未来
44 3
|
12天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
11天前
|
算法 数据安全/隐私保护 索引
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。

热门文章

最新文章