用验证机制加强神经网络的能力:研究者提出机器学习防御措施-阿里云开发者社区

开发者社区> 雷锋网> 正文
登录阅读全文

用验证机制加强神经网络的能力:研究者提出机器学习防御措施

简介: 几年前,我们见证了神经网络和学习算法的快速兴起。人工智能时代正在到来,探索过程中也不可避免出现一些失败的尝试,有些失败的项目往往有迹可循,因为算法足够简单,我们可以以管窥豹,做出合理的猜想。

几年前,我们见证了神经网络和学习算法的快速兴起。人工智能时代正在到来,探索过程中也不可避免出现一些失败的尝试,有些失败的项目往往有迹可循,因为算法足够简单,我们可以以管窥豹,做出合理的猜想。

但是,如果涉及到深层神经网络的问题,就很难讲了。比如,早期我们所提的pix2pix技术,很多情况下看起来完全可以零失误完成,但在还是有很多失败案例。

用验证机制加强神经网络的能力:研究者提出机器学习防御措施 | 2分钟读论文

Twitter上出现的各种失败案例

这不仅因为神经网络在面对虚假输入时没有鉴别能力,很可能会误读、误识,更因为神经网络没有对抗性,可能随时被颠覆,也就是说,我们分分钟可以训练一种新的神经网络来颠覆原有的学习系统,让它错乱崩溃。用验证机制加强神经网络的能力:研究者提出机器学习防御措施 | 2分钟读论文

给汽车加点噪声  深度神经网络还以为是鸵鸟

就目前来说,作者们认为现有防御措施的限制在于,缺乏对机器学习模型的验证机制。用验证机制加强神经网络的能力:研究者提出机器学习防御措施 | 2分钟读论文

测试执行脚本

本期论文认为,神经网络需要具备验证关键任务的能力,探讨了几类保护措施,让机器学习模型能够真正起作用。视频中还介绍了论文相关的小实验,实验将一个具有神经网络的小型防撞飞机作为研究对象,来呈现学习算法在关键任务系统中运作机制和原理。

▷ 观看论文解读大概需要  4  分钟

学霸们还请自行阅读论文以获得更多细节

论文原址 https://arxiv.org/pdf/1702.01135.pdf

来源 / Two Minute Papers

翻译 / 洪振亚

校对 / 囧囧

整理 / 雷锋字幕组

雷锋网(公众号:雷锋网)AI研习社出品系列短视频《 2 分钟论文 》,带大家用碎片时间阅览前沿技术,了解 AI 领域的最新研究成果。欢迎关注雷锋网雷锋字幕组专栏,获得更多AI知识~感谢志愿者对本期内容作出贡献。

用验证机制加强神经网络的能力:研究者提出机器学习防御措施 | 2分钟读论文






本文作者:雷锋字幕组
本文转自雷锋网禁止二次转载,原文链接

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

秉承“关注智能与未来”的宗旨,持续对全球前沿技术趋势与产品动态进行深入调研与解读。

官网链接