Python3入门机器学习 - 模型泛化

简介: 模型正则化在多项式回归中如果degree过大,会造成过拟合的情况,导致模型预测方差极大,因此,我们可以使用模型正则化的方式来减小过拟合导致的预测方差极大的问题即在我们训练模型时,不仅仅需要将预测的y和训练集的y的均方误差达到最小,还要使参数向量最小。

模型正则化


在多项式回归中如果degree过大,会造成过拟合的情况,导致模型预测方差极大,因此,我们可以使用模型正则化的方式来减小过拟合导致的预测方差极大的问题


img_0c35ff19d3f287da7f2e269cac50138b.png
img_a173fb687826456288b5fe93ba9ed75d.png

即在我们训练模型时,不仅仅需要将预测的y和训练集的y的均方误差达到最小,还要使参数向量最小。(即上图公式。)

使用岭回归达到最小方差


from sklearn.linear_model import Ridge

def RidgeRegression(degree,alpha):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),
        ("scaler",StandardScaler()),
        ("ridge",Ridge(alpha=alpha))
    ])

ridge_reg = RidgeRegression(20,0.01)

ridge_reg.fit(X_train,y_train)
mean_squared_error(ridge_reg.predict(X_test),y_test)   #在degree=20的过拟合情况下,本来达到170的方差在模型正则化之后仅有一点几。

模型正则化的参数alpha即为公式中的α,即α越大,就代表训练过程中模型系数影响程度越大

使用Lasso回归达到最小方差


from sklearn.linear_model import Lasso

def RidgeRegression(degree,alpha):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),
        ("scaler",StandardScaler()),
        ("ridge",Lasso(alpha=alpha))
    ])

ridge_reg = RidgeRegression(20,0.1)

ridge_reg.fit(X_train,y_train)
mean_squared_error(ridge_reg.predict(X_test),y_test) 
img_57b11f2e76d9610aba1b979763ea56c9.png
image.png

img_7b16cc7e0bceb159b7e48e8037685e19.png




Lasso与Ridge对比

如上图可见,Ridge在a很大时,所得预测曲线依然是曲线,但Lasso在a较大时,更倾向于变为一条直线,如果用梯度下降法的思想来考虑,这是因为在计算更优解时,Ridge的theta的斜率向量会让theta一直以一个比较平缓的梯度下降,然而Lasso的斜率向量则不然。而Lasso的这种特性会让更多的特征值的系数theta变为0,因此我们可以使用Lasso来进行特征值的过滤,即变为0的特征值是对模型影响较小的特征值。

目录
相关文章
|
1月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
2月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
2月前
|
人工智能 算法 网络安全
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
|
1月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
376 12
Scikit-learn:Python机器学习的瑞士军刀
|
1月前
|
数据管理 开发者 Python
揭秘Python的__init__.py:从入门到精通的包管理艺术
__init__.py是Python包管理中的核心文件,既是包的身份标识,也是模块化设计的关键。本文从其历史演进、核心功能(如初始化、模块曝光控制和延迟加载)、高级应用场景(如兼容性适配、类型提示和插件架构)到最佳实践与常见陷阱,全面解析了__init__.py的作用与使用技巧。通过合理设计,开发者可构建优雅高效的包结构,助力Python代码质量提升。
125 10
|
1月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
259 11
|
2月前
|
人工智能 自然语言处理 运维
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
|
3月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
1月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
75 11
|
3月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
131 28

热门文章

最新文章

推荐镜像

更多