【数据结构】八大排序之计数排序算法

简介: 【数据结构】八大排序之计数排序算法

一.计数排序简介及思想

计数排序(Counting Sort)又称为鸽巢原理,是对哈希直接定址法的变形应用.

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法动图演示如下:

计数排序的实现思路:

  1. 统计每个数据出现的次数
  2. 按序输出

虽然计数排序实现思路比较简单,但我们还是有一些细节需要注意:

绝对映射和相对映射:

  • 绝对映射:如下图,数据的数值和数组下标是一一对应的,这种计数方式叫做绝对映射
  • 绝对映射的缺点:开辟数组占用空间大,不能够排负数
  • 相对映射:如下图,数据在数组中是按照数值的相对大小来映射的,这种计数方式叫做相对映射. 相对映射较好的解决了绝对映射的缺点,但当遇到待排数据分布较为分散且跨度较大时,就不太适合使用计数排序来进行排序了.

二.计数排序代码实现

算法实现步骤:(以升序为例)

  1. 遍历待排数组,找出数组中的最大值max和最小值min.
  2. 开辟大小为max-min+1大小的数组用以计数.
  3. 遍历数组计数.
  4. 将计数数组中记录的数据恢复到原数组中.

综上,计数排序的代码实现如下:

//计数排序
void CountSort(int* a, int n)
{
  int max = a[0], min = a[0];
  for (int i = 1; i < n; i++)
  {
    if (a[i] > max)
    {
      max = a[i];
    }
    if (a[i] < min)
    {
      min = a[i];
    }
  }
 
  int range = max - min + 1;
 
  int* countA = (int*)calloc(sizeof(int) , range);
  if (countA == NULL)
  {
    perror("calloc fail\n");
    return;
  }
 
  //计数
  for (int i = 0; i < n; i++)
  {
    countA[a[i] - min]++;//映射的下标++就行
  }
 
  //排序
  int j = 0;
  for (int i = 0; i < range; i++)
  {
    while (countA[i]--)
    {
      a[j++] = i + min;
    }
  }
 
  free(countA);
}

三.计数排序复杂度分析

📌时间复杂度

计数排序的时间复杂度主要取决于两部分,一是前期遍历数组找出最大值和最小值,这里的时间复杂度为n,二是遍历数组计数,这里的时间复杂度还是n,三是遍历计数数组排序,这里的时间复杂度为range(即max-min),因此我们通常认为,计数排序的时间复杂度为O(n+range);当range接近n时,我们其实可以认为计数排序的时间复杂度为O(n).

📌空间复杂度

计数排序的空间复杂度主要取决于动态开辟的计数数组的大小,即range,因此计数排序的空间复杂度为O(range).


结语

希望这篇计数排序算法详解能对大家有所帮助,欢迎大佬们留言或私信与我交流.

有关更多排序相关的知识可以移步:

https://blog.csdn.net/weixin_72357342/article/details/135038495?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135038495%22%2C%22source%22%3A%22weixin_72357342%22%7D&fromshare=blogdetail

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!


数据结构排序算法篇思维导图:



相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
63 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
151 4
|
3天前
|
存储 人工智能 算法
【C++数据结构——内排序】二路归并排序(头歌实践教学平台习题)【合集】
本关任务是实现二路归并算法,即将两个有序数组合并为一个有序数组。主要内容包括: - **任务描述**:实现二路归并算法。 - **相关知识**: - 二路归并算法的基本概念。 - 算法步骤:通过比较两个有序数组的元素,依次将较小的元素放入新数组中。 - 代码示例(以 C++ 为例)。 - 时间复杂度为 O(m+n),空间复杂度为 O(m+n)。 - **测试说明**:平台会对你编写的代码进行测试,提供输入和输出示例。 - **通关代码**:提供了完整的 C++ 实现代码。 - **测试结果**:展示代码运行后的排序结果。 开始你的任务吧,祝你成功!
23 10
|
3天前
|
搜索推荐 算法 数据处理
【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】
本文介绍了希尔排序算法的实现及相关知识。主要内容包括: - **任务描述**:实现希尔排序算法。 - **相关知识**: - 排序算法基础概念,如稳定性。 - 插入排序的基本思想和步骤。 - 间隔序列(增量序列)的概念及其在希尔排序中的应用。 - 算法的时间复杂度和空间复杂度分析。 - 代码实现技巧,如循环嵌套和索引计算。 - **测试说明**:提供了测试输入和输出示例,帮助验证代码正确性。 - **我的通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了代码运行的测试结果。 通过这些内容,读者可以全面了解希尔排序的原理和实现方法。
26 10
|
3天前
|
搜索推荐 C++
【C++数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
快速排序是一种高效的排序算法,基于分治策略。它的主要思想是通过选择一个基准元素(pivot),将数组划分成两部分。一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。然后对这两部分分别进行排序,最终使整个数组有序。(第一行是元素个数,第二行是待排序的原始关键字数据。本关任务:实现快速排序算法。开始你的任务吧,祝你成功!
23 7
|
3天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
17 2
|
19天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
72 1