基于game-based算法的动态频谱访问matlab仿真

简介: 本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

展示了负载因子P和次级传输功率不同的HPE。

image.png

   从图中可以看出,随着|hP E|²扩大,用户P更好的为二级用户分配更多的频谱机会,以便刺激二级用户传输更多的干扰功率,因此,导致ρ的减少和Psu的增加。

image.png

   不同方案下不同用户P信噪比下的保密率。可以很自然地看到,随着信噪比的增加,主用户的保密性也会增加。此外,我们所提出的基于游戏的干扰方法比功率控制方案的效果要好得多,因为在干扰下接收机的干扰被消除了。可以看出,两种方案都优于不合作的方案。

image.png

   不同|hP E|下的保密率。从图中可以看出,随着窃听者通道的改善,保密性降低。同样可以看出,我们提出的方案的保密率要高于功率控制方案。

image.png

   不同主用户P信噪比的辅助用户效用。随着信噪比的增加,P会降低其负载系数。因此,更多的干扰功率将投入合作,这反过来有利于二次用户自己。因此,辅助用户的效用随着用户P的信噪比的增加而增加。

image.png

   不同|hP E|的二次用户效用图。没有合作,当|hP E| ²小于0.2时,效用为零。随着|hP E|2的增大,会有更多的频谱机会分配给二次用户,因此,随着|hP E|2的增大,功利性也随之增加。

image.png

   从图中可以看出,随着delta扩大,用户P更好的为二级用户分配更多的频谱机会,以便刺激二级用户传输更多的干扰功率,因此,导致ρ的减少和Psu的增加。

image.png

  不同主用户P信噪比的辅助用户效用。随着delta的增加,P会降低其负载系数。因此,更多的干扰功率将投入合作,这反过来有利于二次用户自己。因此,辅助用户的效用随着用户P的信噪比的增加而增加。

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```for i = 1:length(deltai)
tmps = 0;
tmps2= 0;
for jj = 1:5000
pj = 0.8+rand/5;
up_uplp = 0.18;
pi1 = up_uplp;
pi2 = (1-up_uplp)(1-pj);
pi3 = (1-up_uplp)
pj;
Up = pi2R2 + pi3R1;
Rsu = max([1+Psu_tmphi./di]);
Us = pi1
Rsu - 2cPsu_tmppi3;
%根据us反推p,Psu最大的时候,对应的Us的值
Up = Us;
PP = Up/((1-pj)
R2 + pj(log2(1+PpuhP2/dP)-log2(1+PpuhPE2/(Psu_tmphAE2 + PsutmphBE2 + dE))));
tmps = abs(PP);
Px(jj) = (1-tmps)/tmps;
Psuss = max(1/(2
log(2)cPx(jj)*pj) - 1/gamma,0);
tmps2 = tmps2+Psuss;
end
tmps2 = tmps2/5000;
p
(i) = mean(Px)/2;
Psu_(i) = tmps2;
end

figure;
subplot(121);
semilogx(deltai,p,'b-o');
xlabel('delta');
ylabel('p')
grid on
axis([0,1,0,2.5]);
subplot(122);
semilogx(deltai,Psu
,'b-o');
xlabel('delta');
ylabel('P_s_u')
grid on
axis([0,1,0,2.5]);
01_0176m

```

4.算法理论概述
认知无线电网络中的安全问题近年来引起了人们的极大关注。与基于密钥的上层加密不同,物理层安全开辟了一种全新的实现方法安全通信。这一开创性的工作可以从信息理论的角度追溯到Wyner。他介绍了窃听通道,并透露,如果窃听者的通道比合法接收者的]差,就可以达到非零保密率。近年来,认知无线电网络中的物理层安全问题,已引起了人们的广泛关注,特别是频谱底层系统中的授权频带或频谱共享系统中的公共频带。

   随着无线通信技术的发展和无线设备的普及,频谱资源变得越来越稀缺。传统的静态频谱分配方式导致频谱利用率低下,而动态频谱访问(Dynamic Spectrum Access, DSA)技术允许未授权用户在不影响授权用户通信的前提下,动态地访问空闲频谱,从而提高了频谱利用率。

   游戏理论是研究博弈行为的数学理论,它可以用来描述和分析具有竞争和合作性质的交互系统。在动态频谱访问中,未授权用户之间的竞争和合作可以通过游戏理论模型来描述。在动态频谱访问中,未授权用户(也称为次级用户)通过竞争空闲频谱资源来进行通信。基于游戏理论的动态频谱访问算法旨在找到一个纳什均衡,使得所有用户的效用最大化。

    相关的理论公式推演,可以参考附带的参考文献:

image.png

相关文章
|
1天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
4天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。
|
4天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
40 0
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
6天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
14天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章