阿里文娱测试实战:机器学习+基于热度链路推荐的引流,让对比测试更精准

简介: 引流对比测试是目前阿里内部常用的一种回归测试手段,它基于线上真实流量做采集、回放、对比,通过对比结果评估代码变更是否影响了线上链路和功能。通过这种方案,极大地降低了手工构造测试数据的成本:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

作者 | 阿里文娱测试开发专家 正辰
出品 | CSDN(ID:CSDNnews)

1.对比测试的原理和现状

引流对比测试是目前阿里内部常用的一种回归测试手段,它基于线上真实流量做采集、回放、对比,通过对比结果评估代码变更是否影响了线上链路和功能。通过这种方案,极大地降低了手工构造测试数据的成本:

image

1)基于用户真实请求,对于复杂业务的接口,降低了模拟用户场景的成本;
2)采集流量足够多的时候,可以对业务场景做全覆盖测试,减少测试遗漏;
3)测试环境稳定,结果明确可靠,并且不需要手工测试执行。目前线上请求采集策略主要是按比例随机采集,从使用情况来看,存在一些问题:

1)从测试的角度,我们并不清楚采集到的流量是否覆盖了核心场景。用测试的话来说:这些流量到底覆盖了哪些用例?无法有效度量;
2)线上持续采集的情况下,回放请求要及时手工维护,排除失效或者重复请求;
3)采集配置多个接口时,由于大流量接口占比很高,导致小流量接口采集不到有效流量, 需要手动调整采集配置。

基于以上这些问题,不难发现,采集请求的有效性和覆盖度是对比测试能持续发挥作用的关键问题。如何破解?优酷在对比测试中引入热度链路覆盖率,实现了一套基于线上热度链路覆盖的精准对比测试方案。

2.如何有效度量测试覆盖率?

1.代码覆盖率

传统的测试覆盖率统计方法,测试之前先对代码文件进行插桩,生成插过桩的 class 文件或 者 jar 包,测试执行后,会自动收集走到的代码路径,生成覆盖率信息到文件,最后统一对覆盖 率信息进行处理,生成覆盖率报告。度量覆盖率的主要指标有:代码行覆盖、代码分支覆盖、 方法覆盖等等。

1)代码覆盖率的优点:

a)原理和方案比较成熟,有很多现成的工具,实现成本比较低;
b)度量维度比较多,能结合多个指标全面评估代码覆盖率。

2)代码覆盖率的问题:

a)无法有效评估业务场景的覆盖率。代码覆盖率高只能说明代码被执行到了,并不能说明 业务场景被覆盖了,业务场景的覆盖率还需要手工评估;
b)覆盖率分析成本比较高。由于代码质量问题(无效代码或者冗余代码),很多代码不会 被真实的业务场景调用到,这部分代码很难做到测试覆盖,覆盖的价值也不高,并不一定需要 覆盖。

2.子调用链路覆盖率

通过在中间件代码中插桩,统一实现对外部子调用的代码路径采集,从而聚合出代码走过 的子调用链路,然后通过聚合链路请求得出每条子调用链路的热度,从而获得线上真实用户场 景的链路分布情况。子调用链路精准反馈了业务场景的链路和热度,这种基于线上真实请求得

出的覆盖率评估方案,目前在阿里内部被广泛使用。度量覆盖率的主要指标是:子调用链路覆 盖率。

1)相比传统的代码覆盖率:

a)基于线上真实用户请求分析代码执行路径,通过子调用链路代表用户场景,能准确评估业务场景的覆盖情况;
b)统一在中间件代码中插桩,业务代码无需改动,接入成本比较低。基于子调用链路覆盖率评估,是否可以解决对比测试提出的覆盖率评估难题呢?是否也能适合优酷的业务场景?在试运行一段时间后,我们发现优酷一些业务采集到的子调用链路特别少,和业务的体量、复杂度不一致。带着这个疑问,我们看看下面两个请求的代码运行链路:

image

2)基于以上代码运行链路分析:

a)部分业务外部依赖比较少,主要逻辑在应用内部,导致代码运行的外部子调用完全一样,但内部方法链路不一样;
b)评估业务内部逻辑覆盖的话,内部方法链路覆盖要比子调用链路覆盖更有效。如果能聚合出内部方法链路,对优酷业务场景的覆盖率评估会更有指导意义。于是优酷和集团 JVM-SANDBOX 团队深入合作,提出了一套内部方法链路覆盖率的评估方案:热度链路覆盖率。

3.基于热度链路推荐的对比测试

通过收集一段时间内的线上真实请求,并记录下请求执行过的方法路径,即为链路。线上不同的真实请求很多都是走的同一个链路,这样不同的链路就有不同的热度,根据链路热度可 以自动评估出需要优先覆盖的链路,即为热度链路。

1.方法链路感知

要采集方法路径,首先需要感知到每个方法的执行。利用 JVM-SANDBOX 底层模块的能 力,能统一在每个内部方法做代码增强,感知到每个方法“运行前”、“返回前”、“异常后”三 个事件,从而收集到代码执行到的方法数据,聚合成方法链路。

image

1)BEFORE 事件:感知和改变入参;直接返回;
2)RETURN 事件:感知和改变返回值;重新构造返回结果;抛异常;
3)THROWS 事件:重新构造异常;模拟正常返回。

2.采集模块部署

在模块部署环节,最大的挑战是配置需要增强的代码逻辑类。最开始由各个业务方自己配 置,但由于配置范围没有统一标准,导致采集的链路不完成,很难获取比较。根据优酷的业务 特性,我们统一提供了一套代码逻辑类扫描服务,支持优酷各个业务的代码解析和逻辑类扫描, 为每个业务方提供统一的代码增强配置标准。接入过程如下:

image

1)TraceModule:采集运行链路;2)Repeater:采集请求和返回结果,录制回放;3)MockModule:服务端动态 Mock。

3.链路采集和热度计算

线上模块激活后,就可以根据配置的采样比率,持续采集线上流量,并聚合方法链路。

image

有了应用链路数据做参考后,通过采集线上请求,并识别出请求的链路,就可以按照热度 链路或者全部链路推荐对比请求,通过扩大请求采集周期(推荐采集周期为 7 天),最后推荐的 请求可以覆盖线上全部业务链路,不仅提升了对比测试的有效覆盖率,而且推荐过程高效且全自动化,全程不需要人工干预,可以快速推广到服务端所有应用的对比测试。

4.回顾&展望

基于热度链路分析,可以辅助测试更具体地理解真实的业务场景,除了用于推荐对比测试请求,在优酷服务端回归体系中,也用于评估回归测试的覆盖率,相比传统的代码覆盖率评估,业务指导意义更明确。

当然,对于高热度的链路,可能包含了大量的用户请求,也包含了不同的业务含义,如果只覆盖其中一条请求,虽然链路覆盖了,但会造成业务覆盖损失,后期我们可以通过机器学习,智能聚类,让机器来筛选出覆盖更完整、更精确的测试集,深度挖掘线上请求数据的价值,辅助测试建设更有意义的质量保障体系。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-03-29
本文作者:阿里文娱
本文来自:“CSDN”,了解相关信息可以关注“CSDN

相关文章
|
1月前
|
Web App开发 前端开发 安全
前端研发链路之测试
本文由前端徐徐撰写,介绍了前端测试的重要性及其主要类型,包括单元测试、E2E测试、覆盖率测试、安全扫描和自动化测试。文章详细讲解了每种测试的工具和应用场景,并提供了选择合适测试策略的建议,帮助开发者提高代码质量和用户体验。
29 3
前端研发链路之测试
|
1月前
|
机器学习/深度学习 人工智能 安全
自动化测试的未来:AI与机器学习的结合
随着技术的发展,软件测试领域正迎来一场革命。自动化测试,一度被认为是提高效率和准确性的黄金标准,如今正在被人工智能(AI)和机器学习(ML)的浪潮所推动。本文将探讨AI和ML如何改变自动化测试的面貌,提供代码示例,并展望这一趋势如何塑造软件测试的未来。我们将从基础概念出发,逐步深入到实际应用,揭示这一技术融合如何为测试工程师带来新的挑战和机遇。
62 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的未来:AI与机器学习的融合
【9月更文挑战第29天】在软件测试领域,自动化测试一直是提高测试效率和质量的关键。随着人工智能(AI)和机器学习(ML)技术的飞速发展,它们正逐步渗透到自动化测试中,预示着一场测试革命的来临。本文将探讨AI和ML如何重塑自动化测试的未来,通过具体案例展示这些技术如何优化测试流程,提高测试覆盖率和准确性,以及它们对测试工程师角色的影响。
91 7
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
探索自动化测试的未来:AI与机器学习的融合
【9月更文挑战第29天】在软件测试领域,自动化测试一直是提高效率和准确性的关键。但随着技术的发展,特别是人工智能(AI)和机器学习(ML)的兴起,我们见证了一个新时代的到来——自动化测试的未来正逐渐被重新定义。本文将探讨AI和ML如何改变自动化测试的面貌,从智能测试脚本的生成到测试结果的深度分析,我们将一探究竟这些前沿技术是如何使测试流程更加智能化、高效化,并预测它们将如何塑造软件测试的未来趋势。
|
2月前
|
机器学习/深度学习 人工智能 测试技术
自动化测试的未来:AI与机器学习的融合之路
【9月更文挑战第15天】在软件测试领域,自动化一直被视为提高效率和精确度的关键。随着人工智能(AI)和机器学习(ML)技术的不断进步,它们已经开始改变自动化测试的面貌。本文将探讨AI和ML如何赋能自动化测试,提升测试用例的智能生成、优化测试流程,并预测未来趋势。我们将通过实际代码示例来揭示这些技术如何被集成到现有的测试框架中,以及开发人员如何利用它们来提高软件质量。
75 15
|
2月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
3月前
|
机器学习/深度学习 资源调度 分布式计算
阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源
PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。
|
3月前
|
机器学习/深度学习 人工智能 运维
自动化测试的未来:AI与机器学习的融合
【8月更文挑战第29天】随着技术的快速发展,自动化测试正在经历一场革命。本文将探讨AI和机器学习如何改变软件测试领域,提供代码示例,并讨论未来趋势。
|
3月前
|
Java 测试技术
SpringBoot单元测试快速写法问题之区分链路环节是否应该被Mock如何解决
SpringBoot单元测试快速写法问题之区分链路环节是否应该被Mock如何解决
|
3月前
|
缓存 运维 容灾
入行5年,谈谈我在阿里做测试开发的经验
作者在阿里一直从事测试开发相关工作,这几年学习很多、收获很多,作者希望给还在该方向摸爬滚打的同学一些启发和方向。