【数据结构】八大排序之归并排序算法

简介: 【数据结构】八大排序之归并排序算法

一.归并排序简介及思想

"归并"一词的中文含义就是合并,并入的意思,而在数据结构中的定义将两个或两个以上的有序表组合成一个新的有序表.

归并排序(Merging Sort)就是利用归并的思想实现的排序方法.

它的原理是:

      假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到 ( 表示不小于x的最小整数)个长度为2或1的有序子序列;再两两归并,......,如此重复,直至得到一个长度为n的有序序列为止,这种排序方法称为2路归并排序.

算法动图演示如下:

算法逻辑演示:


二.归并排序的代码实现

算法实现步骤:(以升序为例)

  1. 将数组中的n个数据看成n个有序子序列
  2. 然后将其两两归并到新数组内,得到 +1或 个长度为1或2的有序子序列,将新数组的数据拷贝回原数组.
  3. 重复步骤2,直到归并得到一个长度为n的有序序列为止.

综上,归并排序的代码实现如下:

//归并递归子函数
void _MergeSort(int* a, int begin, int end, int* tmp)
{
  if ( begin >= end )
    return;
 
  int mid = (begin + end) / 2;
  
  //先递归后访问进行操作,类似于树的后序遍历
  _MergeSort(a, begin, mid, tmp);
  _MergeSort(a, mid+1, end, tmp);
 
  //递归到叶子数组后,开始归并
  int begin1 = begin, end1 = mid;
  int begin2 = mid + 1, end2 = end;
  int i = begin;
 
  while (begin1 <= end1 && begin2 <= end2)
  {
    if (a[begin1] < a[begin2])//循环将小值尾插进新数组
    {
      tmp[i++] = a[begin1++];
    }
    else
    {
      tmp[i++] = a[begin2++];
    }
  }
 
    //防止合并时有数组没拷贝完
  while (begin1 <= end1)
  {
    tmp[i++] = a[begin1++];
  }
 
  while (begin2 <= end2)
  {
    tmp[i++] = a[begin2++];
  }
 
  //拷贝tmp回原数组
  memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
 
}
 
//归并排序
void MergeSort(int* a, int n)//不写区间,因为该函数不递归自己,否则每次都要malloc
{
  //开数组
  int* tmp = (int*)malloc(sizeof(int) * n);
  if (tmp == NULL)
  {
    perror("malloc fail::\n");
    return;
  }
 
  _MergeSort(a, 0, n - 1, tmp);//归并递归子函数
 
  free(tmp);
}

三.归并排序的非递归代码实现

算法实现思路:(以升序为例)

      因为归并排序递归是将完整的数组不断分割成只有一个元素的数组进行归并的,那么我们实现非递归的时候,就可以在一开始直接将数组视为n个只有一个元素的子序列进行归并,然后再按照两个两个元素的数组进行归并,一直向上归并,直到归并成为一个有n个元素的有序数组为止.

       归并排序在非递归实现时需要额外注意当n不是2的次方倍时归并数组末尾的越界现象,并对此错误现象做出及时的修正.

归并排序的非递归实现代码如下:

//归并排序非递归
void MergeSortNonR(int* a, int n)
{
  //开数组
  int* tmp = (int*)malloc(sizeof(int) * n);
  if (tmp == NULL)
  {
    perror("malloc fail::\n");
    return;
  }
 
  int gap = 1;
 
  while (gap < n)
  {
    for (int i = 0; i < n; i =i+ 2 * gap)
    {
      int begin1 = i, end1 = i + gap - 1;
      int begin2 = i + gap, end2 = i + 2 * gap - 1;
 
      //修正数组非2的次方倍数时的越界现象
      if (end1 >= n)
      {
        end1 = n - 1;
        begin2 = n;
        end2 = n - 1;
      }
      else if (begin2 >= n)
      {
        begin2 = n;
        end2 = n - 1;
      }
      else if (end2 >= n)
      {
        end2 = n - 1;
      }
 
      int j = i;
      while (begin1 <= end1 && begin2 <= end2)
      {
        if (a[begin1] < a[begin2])
        {
          tmp[j++] = a[begin1++];
        }
        else
        {
          tmp[j++] = a[begin2++];
        }
      }
 
      while (begin1 <= end1)
      {
        tmp[j++] = a[begin1++];
      }
      while (begin2 <= end2)
      {
        tmp[j++] = a[begin2++];
      }
    }
    memcpy(a, tmp, sizeof(int) * n);
    gap *= 2;
  }
 
  free(tmp);
}

四.归并排序的复杂度分析

📌时间复杂度

从最开始的示意图我们可以看出,归并排序一趟总共处理n个元素,而总共要处理logn趟,因此归并排序的最好,最坏,以及平均时间复杂度都是一样的,那就是O(nlogn).


📌空间复杂度

而我们在排序过程中需要一个和原数组相同大小的临时数组来对数组进行归并排序,因此归并排序的空间复杂度为O(n).


结语

希望这篇归并排序算法详解能对大家有所帮助,欢迎大佬们留言或私信与我交流.

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!

数据结构排序算法篇思维导图:



相关文章
|
2月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
77 9
 算法系列之数据结构-二叉树
|
2月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
83 3
 算法系列之数据结构-Huffman树
|
2月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
94 22
|
2月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
2月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
3月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
120 29
|
3月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
162 25
|
16天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
16天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。