用Python和OpenCV库实现识别人物出现并锁定

简介: 用Python和OpenCV库实现识别人物出现并锁定

1. 安装必要的库

首先,确保您已安装以下库:

  • OpenCV: 用于图像处理和计算机视觉任务
  • imutils: 提供一些实用函数,如图像旋转、裁剪等

安装方法如下:

pip install opencv-python
pip install imutils

2. 加载和显示视频

首先,我们需要导入所需的库,并加载一个视频文件。我们将使用OpenCVVideoCapture类来加载视频。

import cv2
import imutils
video_path = "path/to/your/video.mp4"
# 打开视频
cap = cv2.VideoCapture(video_path)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    # 缩放以提高处理速度
    frame = imutils.resize(frame, width=600)
    cv2.imshow("Input Video", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break
cap.release()
cv2.destroyAllWindows()

3. 应用预训练的人物检测模型

接下来,我们将使用OpenCV中提供的预训练模型。这里我们使用MobileNet-SSD模型,因为它在速度和准确性之间达到了很好的平衡。

prototxt_path = "path/to/your/MobileNetSSD_deploy.prototxt"
model_path = "path/to/your/MobileNetSSD_deploy.caffemodel"
# 加载预训练模型
net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)

4. 在检测到的人物周围绘制边界框

现在,我们将使用预训练的模型来检测视频中的人物,并在检测到的人物周围绘制边界框。

# 设置置信度阈值
confidence_threshold = 0.5
while True:
    ret, frame = cap.read()
    if not ret:
        break
    frame = imutils.resize(frame, width=600)
    (h, w) = frame.shape[:2]
    # 将图像转换为blob
    blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
    net.setInput(blob)
    detections = net.forward()
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > confidence_threshold:
            idx = int(detections[0, 0, i, 1])
            if idx == 15:  # 15 代表人类
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")
                # 在检测到的人物周围绘制边界框
                cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
    cv2.imshow("Input Video", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

5. 保存和显示结果

最后,我们将处理后的视频保存到磁盘,并在程序完成后关闭所有窗口。

# 创建 VideoWriter 对象以保存处理后的视频
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("output.mp4", fourcc, 30, (w, h))
while True:
    ret, frame = cap.read()
    if not ret:
        break
    frame = imutils.resize(frame, width=600)
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
    net.setInput(blob)
    detections = net.forward()
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > confidence_threshold:
            idx = int(detections[0, 0, i, 1])
            if idx == 15:
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")
                cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
    # 将帧写入输出视频
    out.write(frame)
    cv2.imshow("Input Video", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break
cap.release()
out.release()
cv2.destroyAllWindows()

总结:

现在,您应该已经成功地创建了一个可以识别人物出现并将其锁定的项目。通过运行此代码,您将能够在给定的视频中检测到人物,并在检测到的人物周围绘制边界框。此外,该程序将处理后的视频保存到磁盘,以便您以后查看。

本教程展示了如何使用Python和OpenCV库构建一个简单的人物识别和锁定项目。您可以在此基础上进行扩展,以满足您的特定需求。例如,您可以尝试:

  1. 使用其他预训练模型,以提高识别准确性或降低计算复杂性。
  2. 为检测到的人物添加标签,例如显示置信度分数或人物ID。
  3. 跟踪检测到的人物在视频中的移动轨迹。
  4. 将此项目扩展为实时人物识别系统,通过摄像头实时监控人物出现。
目录
相关文章
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
125 77
|
1月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
73 4
数据分析的 10 个最佳 Python 库
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
24天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
97 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
52 8
|
1月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
92 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4
下一篇
DataWorks