Python装饰器实战:打造高效性能计时工具

简介: 在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。

在数据分析工作中,针对百万,千万级别的数据进行分析是常有的事情,

因此,分析代码性能的重要性不容忽视,能够有一个方便快速的测试函数性能的方法,

对于我们快速发现性能瓶颈,及时优化,提高项目的开发效率至关重要。

本文介绍如何通过Python装饰器来实现性能计时工具

帮助我们在不改变现有代码的基础上,随时测试函数的执行时间。

1. 概要

装饰器来实现这样计时的工具有以下一些好处:

首先,侵入性小,使用装饰器可以非常方便地为函数添加性能计时功能,则无需修改函数的内部代码。

这使得代码更加整洁,也更容易维护。

其次,复用性强,一旦创建了一个性能计时装饰器,就可以将其应用于多个函数,而无需为每个函数单独编写性能计时的代码。

这样不仅提高了代码的效率,也降低了出错的可能性。

最后,是灵活度高,装饰器允许你根据需要定制性能计时的行为,不仅可以打印到终端,也可以根据需求将性能测试结果写入文件或者数据库。

2. 实现计时机制

下面是我目前在用的一个计时装饰器,开发过程中经常用它来看看可能存在性能问题的函数的执行时间。

python

代码解读

复制代码

from functools import wraps
from time import perf_counter


def timeit(loop: int = 1):
    """
    函数执行失败时,重试

    :param loop: 循环执行次数
    :return:
    """

    # 校验参数,参数值不正确时使用默认参数
    if loop < 1:
        loop = 1

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            sum_time: float = 0.0
            for i in range(loop):
                start_time: float = perf_counter()
                ret = func(*args, **kwargs)
                end_time: float = perf_counter()
                sum_time += end_time - start_time

            print(
                f"函数({func.__name__})共执行{loop}次,平均执行时间 {(sum_time/loop):.3f} 秒"
            )
            return ret

        return wrapper

    return decorator

这个装饰器只有一个参数(loop),这个参数可以设置需要反复执行几次待测试的函数(func)。

比如loop设置100,这个装饰器会计算函数(func)执行100次的平均时间。

3. 使用示例

我们用一个模拟的耗时计算函数(compute)来看看这个装饰器的效果。

python

代码解读

复制代码

from decorators import timeit
import time
import random

@timeit(1)
def compute():
    time.sleep(random.random() / 10)
    return 100

if __name__ == "__main__":
    result = compute()
    print(f"{result = }")

从运行结果可以看出,这个timeit装饰器不影响函数的返回值,

不过,这里只执行一次,执行时间存在一定的随机性。

可以将上面代码中的@timeit(1)改成@timeit(100),再看看执行结果。

执行次数多了之后,平均执行时间开始逼近随机数的中值0.05

一般性能测试时,都会设置loop这个参数至少大于10,而不会只执行一次。

4. 总结

总之,基于Python装饰器实现的函数性能计时工具具有代码简洁、复用性强、灵活度高、便于性能分析、易于集成等诸多好处。

这些好处使得它成为我们在进行代码性能分析和优化时的有力工具。


转载来源:https://juejin.cn/post/7352079427863855115

相关文章
|
6天前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
189 101
|
13天前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
162 99
|
13天前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
143 98
|
6天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
88 7
|
6天前
|
缓存 测试技术 Python
解锁Python超能力:深入理解装饰器
解锁Python超能力:深入理解装饰器
51 2
|
9天前
|
数据采集 存储 前端开发
5分钟学会用Python爬取知乎热榜:从零开始的实战指南
免费提供Python与PyCharm安装包,助你零成本开启编程之旅!链接:https://pan.quark.cn/s/48a86be2fdc0
223 0
|
9天前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
10天前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
91 0
|
运维 Java API
性能调优-python SDK 调优
主要从初始化设置以及问题排查几个方向介绍 python 调优
1988 0
性能调优-python SDK 调优
|
18天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
188 102

热门文章

最新文章

推荐镜像

更多