改进麻雀算法OOLSSA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 改进麻雀算法OOLSSA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在现代科技的快速发展中,人工智能领域的研究成果不断涌现,为解决各种实际问题提供了强有力的工具。麻雀搜索算法是一种基于麻雀群体行为的启发式优化算法,它模拟了麻雀在觅食过程中的行为特点。然而,传统的麻雀搜索算法存在一些不足之处,如易陷入局部最优解、搜索效率低等问题。为了克服这些问题,本文提出了一种基于正交对立学习的改进麻雀搜索算法(OOLSSA)。

正交对立学习是一种新兴的优化算法,通过引入正交对立学习因子,可以有效提升搜索算法的性能。在OOLSSA中,我们将正交对立学习应用于麻雀搜索算法中,以提高其搜索效率和优化能力。具体来说,我们通过引入正交对立学习因子,将搜索空间划分为多个子空间,并在每个子空间中进行局部搜索。通过正交对立学习因子的引入,不同子空间之间的搜索过程相互独立,从而避免了传统麻雀搜索算法易陷入局部最优解的问题。

此外,我们还引入了一种自适应机制,根据当前搜索状态动态调整正交对立学习因子的值。这种自适应机制可以使算法在搜索过程中具有更好的鲁棒性和适应性。通过动态调整正交对立学习因子的值,我们可以根据当前搜索状态的变化来调整搜索策略,从而更好地适应不同的优化问题。

为了验证OOLSSA算法的性能,我们将其应用于一系列经典的优化问题,并与其他优化算法进行了比较。实验结果表明,OOLSSA算法在解决各种优化问题时具有较高的搜索效率和优化能力。与传统的麻雀搜索算法相比,OOLSSA算法能够更快地找到全局最优解,并且具有更好的稳定性和鲁棒性。

📣 部分代码

% This function containts full information and implementations of the benchmark % lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]% dim is the number of variables (dimension of the problem)function [lb,ub,dim,fobj] = Get_Functions_details(F)switch F    case 'F1'        fobj = @F1;        lb=-100;        ub=100;        dim=30;            case 'F2'        fobj = @F2;        lb=-10;        ub=10;        dim=30;            case 'F3'        fobj = @F3;        lb=-100;        ub=100;        dim=30;            case 'F4'        fobj = @F4;        lb=-100;        ub=100;        dim=30;            case 'F5'        fobj = @F5;        lb=-30;        ub=30;        dim=30;            case 'F6'        fobj = @F6;        lb=-100;        ub=100;        dim=30;            case 'F7'        fobj = @F7;        lb=-1.28;        ub=1.28;        dim=30;            case 'F8'        fobj = @F8;        lb=-500;        ub=500;        dim=30;            case 'F9'        fobj = @F9;        lb=-5.12;        ub=5.12;        dim=30;            case 'F10'        fobj = @F10;        lb=-32;        ub=32;        dim=30;            case 'F11'        fobj = @F11;        lb=-600;        ub=600;        dim=30;            case 'F12'        fobj = @F12;        lb=-50;        ub=50;        dim=30;            case 'F13'        fobj = @F13;        lb=-50;        ub=50;        dim=30;            case 'F14'        fobj = @F14;        lb=-65.536;        ub=65.536;        dim=2;            case 'F15'        fobj = @F15;        lb=-5;        ub=5;        dim=4;            case 'F16'        fobj = @F16;        lb=-5;        ub=5;        dim=2;            case 'F17'        fobj = @F17;        lb=[-5,0];        ub=[10,15];        dim=2;            case 'F18'        fobj = @F18;        lb=-2;        ub=2;        dim=2;            case 'F19'        fobj = @F19;        lb=0;        ub=1;        dim=3;            case 'F20'        fobj = @F20;        lb=0;        ub=1;        dim=6;                 case 'F21'        fobj = @F21;        lb=0;        ub=10;        dim=4;                case 'F22'        fobj = @F22;        lb=0;        ub=10;        dim=4;                case 'F23'        fobj = @F23;        lb=0;        ub=10;        dim=4;            endend% F1function o = F1(x)o=sum((x.^2));end% F2function o = F2(x)o=sum(abs(x))+prod(abs(x));end% F3function o = F3(x)dim=size(x,2);o=0;for i=1:dim    o=o+sum(x(1:i))^2;endend% F4function o = F4(x)o=max(abs(x));end% F5function o = F5(x)dim=size(x,2);o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);end% F6function o = F6(x)o=sum(abs((x+.5)).^2);end% F7function o = F7(x)dim=size(x,2);o=sum([1:dim].*(x.^4))+rand;end% F8function o = F8(x)o=sum(-x.*sin(sqrt(abs(x))));end% F9function o = F9(x)dim=size(x,2);o=sum(x.^2-10*cos(2*pi.*x))+10*dim;end% F10function o = F10(x)dim=size(x,2);o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);end% F11function o = F11(x)dim=size(x,2);o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;end% F12function o = F12(x)dim=size(x,2);o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));end% F13function o = F13(x)dim=size(x,2);o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));end% F14function o = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];for j=1:25    bS(j)=sum((x'-aS(:,j)).^6);endo=(1/500+sum(1./([1:25]+bS))).^(-1);end% F15function o = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end% F16function o = F16(x)o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end% F17function o = F17(x)o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end% F18function o = F18(x)o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end% F19function o = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];o=0;for i=1:4    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F20function o = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];o=0;for i=1:4    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F21function o = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:5    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F22function o = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:7    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F23function o = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:10    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endendfunction o=Ufun(x,a,k,m)o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end

⛳️ 运行结果

🔗 参考文献

[1]王天雷,张绮媚,李俊辉,等.基于正交对立学习的改进麻雀搜索算法[J].电子测量技术, 2022(010):045.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
11天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
8天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
2天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
16天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
10天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。