路径规划算法:基于粒子群优化的机器人路径规划算法- 附matlab代码

简介: 路径规划算法:基于粒子群优化的机器人路径规划算法- 附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

路径规划是机器人技术中的一个重要研究领域,它涉及到如何使机器人在给定的环境中找到最佳的路径以完成特定任务。在现实世界中,机器人通常需要在复杂的环境中导航,包括避开障碍物、优化行进距离和时间等。因此,路径规划算法的设计和优化对于机器人的智能导航至关重要。

在路径规划算法中,粒子群优化(Particle Swarm Optimization,PSO)是一种常用的方法。PSO算法是一种模拟自然界中鸟群或鱼群等群体行为的优化算法。它通过模拟粒子在搜索空间中的移动和交互,以找到全局最优解。在机器人路径规划中,PSO算法可以用来寻找机器人在给定环境中的最佳路径。

PSO算法的核心思想是通过模拟群体中粒子的行为来搜索最优解。每个粒子代表一个可能的解,并根据自身的经验和群体的经验来调整自己的位置。在路径规划中,每个粒子代表一条可能的路径,而每个粒子的位置代表路径上的各个节点。通过不断迭代和更新粒子的位置,PSO算法可以逐渐找到全局最优解,即机器人的最佳路径。

在机器人路径规划中,PSO算法的具体步骤如下:

  1. 初始化粒子群的位置和速度。位置表示路径上的节点,速度表示路径的方向和速度。
  2. 计算粒子群中每个粒子的适应度值。适应度值表示路径的优劣程度。
  3. 更新粒子的速度和位置。根据粒子自身的最佳位置和群体的最佳位置,调整粒子的速度和位置。
  4. 判断终止条件。如果达到了预设的终止条件,算法结束;否则返回第2步。
  5. 输出全局最优解,即机器人的最佳路径。

PSO算法在机器人路径规划中的应用具有许多优点。首先,它能够有效地搜索全局最优解,避免陷入局部最优解。其次,PSO算法具有较快的收敛速度,能够在较短的时间内找到最佳路径。此外,PSO算法对问题的约束条件较为灵活,适用于各种不同类型的路径规划问题。

然而,PSO算法也存在一些局限性。首先,PSO算法对初始参数的选择较为敏感,不同的参数选择可能导致不同的结果。其次,PSO算法在处理高维问题时可能会遇到维度灾难的问题,导致搜索效率下降。此外,PSO算法对问题的解空间分布较为敏感,如果解空间分布不均匀,可能会导致算法无法找到最佳路径。

综上所述,基于粒子群优化的机器人路径规划算法是一种有效的路径规划方法。它通过模拟群体行为来搜索最优解,能够在复杂环境中找到机器人的最佳路径。然而,PSO算法仍然存在一些局限性,需要在实际应用中进行进一步优化和改进。未来的研究可以探索如何结合其他优化算法和机器学习方法,进一步提高机器人路径规划的性能和效果。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定


核心代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
|
23天前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
|
23天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
116 8
|
23天前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
|
2月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
181 1
|
8月前
|
人工智能 自然语言处理 机器人
9.9K star!大模型原生即时通信机器人平台,这个开源项目让AI对话更智能!
"😎高稳定、🧩支持插件、🦄多模态 - 大模型原生即时通信机器人平台"
265 0
|
6月前
|
弹性计算 自然语言处理 Ubuntu
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
|
5月前
|
机器人
陌陌自动回复消息脚本,陌陌自动打招呼回复机器人插件,自动聊天智能版
这是一款为陌陌用户设计的自动回复软件,旨在解决用户无法及时回复消息的问题,提高成交率和有效粉丝数。软件通过自动化操作实现消息检测与回复功能
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
TsingtaoAI具身智能机器人开发套件及实训方案
该产品套件创新性地融合了先进大模型技术、深度相机与多轴协作机械臂技术,构建了一个功能强大、灵活易用的人机协作解决方案。其核心在于将智能决策、精准感知与高效执行完美结合,为高校实训领域的发展注入新动力。
606 10
|
10月前
|
人工智能 机器人 API
AppFlow:无代码部署Dify作为钉钉智能机器人
本文介绍如何通过计算巢AppFlow完成Dify的无代码部署,并将其配置到钉钉中作为智能机器人使用。首先,在钉钉开放平台创建应用,获取Client ID和Client Secret。接着,创建消息卡片模板并授予应用发送权限。然后,使用AppFlow模板创建连接流,配置Dify鉴权凭证及钉钉连接凭证,完成连接流的发布。最后,在钉钉应用中配置机器人,发布应用版本,实现与Dify应用的对话功能。
2045 7
AppFlow:无代码部署Dify作为钉钉智能机器人
|
12月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
1112 64

热门文章

最新文章