基于免疫算法的TSP问题求解matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。

1.程序功能描述
旅行商问题(Travelling Salesman Problem, TSP)是一个经典的组合优化问题,其目标是在给定一组城市及其相互之间的距离情况下,寻找一条经过每个城市恰好一次且返回起点的最短回路。TSP因其NP完全性及广泛应用背景而备受关注。免疫算法(Immune Algorithm, IA),作为一种受生物免疫系统启发的演化计算方法,近年来被广泛应用于解决此类复杂优化问题。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg

3.核心程序

% 输出最优解
%最优变量
ybest = ysort(:,1);   
%最优值
Lbest = trace(end);  

% 绘制最优路径图
figure

for i=1:Num-1
    plot([city(ybest(i),1),city(ybest(i+1),1)],[city(ybest(i),2),city(ybest(i+1),2)],'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
    hold on;
end
plot([city(ybest(1),1)],[city(ybest(1),2)],'rs',...
'LineWidth',1,...
'MarkerSize',8,...
'MarkerEdgeColor','y',...
'MarkerFaceColor',[0.2,0.5,0.8]);
hold on;
plot([city(ybest(end),1)],[city(ybest(end),2)],'ks',...
'LineWidth',1,...
'MarkerSize',8,...
'MarkerEdgeColor','y',...
'MarkerFaceColor',[0.2,0.8,0.6]);
hold on;
title(['优化最短距离:',num2str(Lbest)]);

% 绘制迭代过程中最优路径长度随迭代次数的变化曲线
figure
plot(trace,'b-');
xlabel('迭代次数')
ylabel('fitness')

4.本算法原理
4.1免疫算法概述
免疫算法模拟了生物免疫系统的运作机制,主要包括以下几个核心概念:

抗原(Antigen):在TSP中,抗原可以对应于待优化问题的解,如一条候选的城市访问路径。

抗体(Antibody):抗体是免疫系统针对特定抗原产生的识别与反应单元。在IA中,抗体表示为问题的可能解,即一条城市访问序列。抗体通常具有编码结构,以便于遗传操作和适应度评估。

免疫库(Repertoire):免疫库是存储抗体的集合,相当于演化算法中的种群。在TSP应用中,免疫库包含若干个不同的城市访问路径。

克隆选择(Clonal Selection):这是免疫系统的核心机制,通过复制高亲和力(适应度)的抗体来增强其在免疫库中的比例。在IA中,对应于选择优秀的抗体个体进行复制(克隆),以保持或增加它们在种群中的数量。

变异(Mutation):生物免疫系统中,抗体在克隆过程中会发生随机变异以增加多样性。在IA中,通过引入变异算子(如交换、逆序等)对克隆的抗体进行局部调整,生成新的解变种。

免疫记忆(Immune Memory):免疫系统能够记住先前遇到的抗原,以便快速响应再次出现的威胁。在IA中,这体现在保留历史最优解或精英个体,确保算法不会遗忘已发现的好解。

4.2免疫算法应用于TSP
将免疫算法应用于TSP求解时,关键步骤包括:

初始化:随机生成一个包含Npop个抗体(即城市访问序列)的免疫库,每个抗体由Num个整数构成,表示城市编号,且无重复。

适应度评估:对于每个抗体A_i,计算其对应的路径长度L(A_i),作为其适应度f(A_i)。在TSP中,适应度函数通常取反路径长度,即f(A_i) = 1 / L(A_i),以使优化目标与最大化适应度一致。路径长度L(A_i)通过以下公式计算:

334e233c4f9eef0e051d2b58f8204d11_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,d(u, v)表示城市u和城市v之间的距离,从距离矩阵dist中获取。

克隆选择与变异:选择适应度较高的抗体进行克隆,然后对克隆体进行变异操作。变异可采用以下两种策略之一:

738100a70e74a972a7741168bbcb014e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

免疫记忆:记录当前迭代周期内找到的最优抗体A_best及其适应度f(A_best)。在后续迭代中,即使A_best未被选中进行克隆,也应将其保留在种群中。

迭代终止条件:当达到预设的最大迭代次数Niter或适应度改善阈值时,终止算法,并返回当前最优抗体A_best作为TSP问题的近似最优解。

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
184 0
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
155 0
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
145 8
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
118 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
110 0
|
1月前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。
|
1月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
|
1月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
1月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)