一种数据驱动的自动驾驶汽车前馈补偿器优化方法(Matlab代码实现)

简介: 一种数据驱动的自动驾驶汽车前馈补偿器优化方法(Matlab代码实现)

💥1 概述

一个可靠的控制器对于自动驾驶汽车的安全和平稳操纵的执行至关重要。控制器必须对外部干扰(如路面、天气、风况等)具有鲁棒性。它还需要处理车辆子系统的内部变化,包括动力系统效率低下、测量误差等。


📚2 运行结果

 

🎉3 参考文献

[1]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(06):650-667.

👨‍💻4 Matlab代码

主函数部分代码:

% 测试工作空间
% plot(x_real.data,y_real.data,'r-',x_predict.data,y_predict.data,'k-')
% input1是MPC输出的期望前轮转角,2是实际速度,3是方向盘转矩,4是方向盘角速度,5是期望1-实际4的差值
% output是0.2s后的期望delta-实际delta
% save NNdata290.mat
% load NNdata80.mat
% 由于zero-orderd的原因,delta_real的t时刻记录的数据其实是t-1时刻的,记录错位了0.05s
% 但实际延迟还是0.2s,只是input的记录延迟了,real(t=6)= predict(t=1)
clc; clear;
load double_lane_change_0.2s_0.02_2.mat
% load double_lane_change_0.2s_0.02.mat
% 24s*20=480  延时0.1s,周期0.05s 所以预测未来2步的
% 步数差距越小越好预测,所以可以采用小延时,改动△u来增大误差
input1 = delta_predict.data(1:360,1);
%input2 = v_real.data(1:360,1);
input3 = steer_torque.data(1:360,1);
input4 = omega.data(1:360,1); 
% input4 = delta_real.data(1501:5795,1);
% input5 = delta_predict.data(1:360,1) -  delta_real.data(1:360,1);
% input_train = [input1, input2, input3,input4, input5]';
input_train = [input1, input3, input4]';
input_train = con2seq(input_train);
future_err = (delta_predict.data(5:364,1) - delta_real.data(6:365,1))';
output_train = con2seq(future_err);
n=3;        % 应该是x的输入数据为,x(t-0) ——> x(t-3)
m=0;
net1 = timedelaynet(m:n,[3]);         % 依赖于过去x,y的两个时间单位的值,隐含层10个节点
% narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn) takes these arguments,
% inputDelays     Row vector of increasing 0 or positive delays (default = 1:2)
% feedbackDelays  Row vector of increasing 0 or positive delays (default = 1:2)
% hiddenSizes     Row vector of one or more hidden layer sizes (default = 10)
% trainFcn        Training function (default = 'trainlm')
net1.divideFcn = '';
net1.trainParam.min_grad = 1e-15;
net1.trainParam.epochs = 25; 
% net1.trainParam.lr = 0.005;
[Xs,Xi,Ai,Ts] = preparets(net1,input_train,output_train);  % 数据准备
% Prepare input and target time series data for network simulation or training
% [Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes these arguments,
% p     Xs    Shifted inputs              2x4289 cell  每个cell是3+1
% Pi    Xi    Initial input delay states   2x6   cell 初始化输入
% Ai    Ai    Initial layer delay states      没用上
% t     Ts    Shifted targets         1x4289 目标值
net1 = train(net1,Xs,Ts,Xi);  % 训练,没用上 Ai
% save ('newdata+buchang80_2_TDnet')      % 只用了第二次迭代跑的80s的数据
% view(net1)
% net2 = removedelay(net1,m);       不用removedelay?
% view(net2)
net2 = net1;
% 加入后可以不输入output_test了?
% save ('net_narx290_removedelay')
 gensim(net2, 0.05)
% 换了输入输出又来一遍,测试集?
% input_test1 = delta_predict.data(1:1495,1);
% input_test2 = v_real.data(1:1495,1);
% input_test3 = steer_torque.data(1:1495,1);
input_test1 = delta_predict.data(1:475,1);
% input_test2 = v_real.data(1:477,1);
input_test3 = steer_torque.data(1:475,1);
input_test4 = omega.data(1:475,1);
% input_test4 = delta_real.data(1:1495,1);
% input_test5 = delta_predict.data(1:475,1) -  delta_real.data(1:475,1);
% input_test = [input_test1, input_test2, input_test3, input_test4, input_test5]';
% input_test = [input_test1, input_test2, input_test3]';
input_test = [input_test1, input_test3, input_test4]';
input_test = con2seq(input_test);
% future_err_test = (delta_predict.data(5:1499,1) - delta_real.data(6:1500,1))';
future_err_test = (delta_predict.data(5:479,1) - delta_real.data(6:480,1))';
output_test = con2seq(future_err_test);
[Xs1,Xi1,Ai1,Ts1] = preparets(net2,input_test,{});    % 数据准备
predict_err = sim(net2,Xs1,Xi1);          % 仿真,yp是预测的误差
[Xs1,Xi1,Ai1,Ts1] = preparets(net2,input_test,output_test);    % 数据准备
e = cell2mat(predict_err)-cell2mat(Ts1);      % 为什么要用cell2mat??输出(估计)误差 - 期望(实际)误差
% x = (5+n:1499)/20;
x = (5+n:479)/20;
figure(1)
plot(x,e,'b')
xlabel('t/s')
ylabel('delta error/rad')
legend('err_err')
相关文章
|
14天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
11天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
15天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
11天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
15天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
1月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。