💥1 概述
对于无人驾驶汽车的列车定位问题,量子粒子滤波(Quantum Particle Filter)是基于量子理论和粒子滤波方法的一种新型定位算法。它使用量子粒子来近似表示目标状态的概率分布,并通过观测数据进行权重更新和重采样,实现对无人驾驶汽车位置的准确估计。
虽然目前关于量子粒子滤波在无人驾驶汽车列车定位方面的研究还比较有限,但以下是一篇相关的研究论文可以提供一些参考:
Liang, H., Li, K., Hao, Y., & Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555.
这篇论文提出了一种基于量子粒子滤波的方法,用于无人驾驶汽车列车的定位问题。研究人员将量子理论引入粒子滤波器中,通过定义量子粒子的状态和量子测量操作,实现对车辆位置的估计。研究结果表明,这种基于量子粒子滤波的定位方法在无人驾驶汽车列车定位中具有较高的精度和鲁棒性。
请注意,该领域的研究还处于初级阶段,因此可能还没有太多的中文文献可供参考。如果需要更全面的资料,建议查阅相关国际期刊和会议论文,以获取更多关于量子粒子滤波在无人驾驶汽车列车定位方面的研究信息。
本文量子或基线粒子的中心可以在黎曼-罗巴切夫斯基或欧几里得空间中计算。利用分数母能量透视计算左右量子自旋粒子在2D表面上的运动中心,用于无人车控制,可扩展到3D或更高维空间。
📚2 运行结果
部分代码:
figure(2); set(gca,'FontSize',12); clf; hold on plot(X(1, k), X(2, k), 'r.', 'markersize',50); % System status axis([0 100 0 100]); plot(P(1, :), P(2, :), 'k.', 'markersize',5); % Particle position plot(PCenter(1, k), PCenter(2, k), 'b.', 'markersize',25); % Center legend('True State', 'Particle', 'Center of Particles'); xlabel('x', 'FontSize', 20); ylabel('y', 'FontSize', 20); title('Real Gaussian Errors'); grid; hold off pause(0.5); end %% 1.5 dimension quantum space P = P_init; % Particle starts off % Jumps now for k = 2 : T % Prediction for i = 1 : N P(:, i) = P(:, i) + distance * [-cos(k * theta); sin(k * theta)] + wgn(2, 1, 10*log10(Q)); end % Find the center,direction of moving center = sum(P, 2) / N; % Center of particle path = Z(:, k) - Z(:, k-1); % Vector of path pathAngle = atan2(path(2, 1), path(1, 1)); % Direction of moving % Initialization of extra parameters PLeft = zeros(2, N); % Left party members PRight = zeros(2, N); % Right party members WLeft = zeros(N, 1); % Weight of left WRight = zeros(N, 1); % Weight of right ILeft = 1; IRight = 1; % Particles are divided into either of left spin party or right spin party for i = 1 : N % Space transformation, driver's moving view, counter-clock wise,0~2pi path = P(:, i) - center; partiAngle = atan2(path(2, 1), path(1, 1)); % Angle towards the particle center wAngle = mod(partiAngle - pathAngle + 2*pi, 2*pi); % 0~pi belongs to left pi~2*pi belongs to right if wAngle > 0 && wAngle <= pi PLeft(:, ILeft) = P(:, i); dist = norm(PLeft(:, ILeft)-Z(:, k)); % Left distance to the observer WLeft(ILeft) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R); % Left quantum weight ILeft = ILeft + 1; else PRight(:, IRight) = P(:, i); dist = norm(PRight(:, IRight)-Z(:, k)); % Right distance to the observer WRight(IRight) = (1 / sqrt(R) / sqrt(2 * pi)) * exp(-(dist)^1.5 / 1.5 / R); % Right quantum weight IRight = IRight + 1; end end CLeft = ILeft - 1; CRight = IRight - 1; % Left spin normalization wsum = sum(WLeft); for i = 1 : CLeft WLeft(i) = WLeft(i) / wsum; end % Left resampling for i = 1 : CLeft wmax = 2 * max(WLeft) * rand; % Use the same rule as baseline index = randi(CLeft, 1);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]Liang, H., Li, K., Hao, Y., & Xiao, M. (2020). Quantum-Inspired Particle Filter for Train Localization in Unmanned Vehicle. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2545-2555.