基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证

简介: 该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。

1.算法运行效果图预览
RTL图:

image.png

仿真图:

image.png

导入到matlab显示效果如下:

image.png

2.算法运行软件版本
matlab2022a

vivado2019.2

3.算法理论概述
在计算机视觉领域,基于肤色模型和中值滤波的手部检测方法是一种常见的初步定位策略。该方法主要分为两大部分:肤色分割以区分出图像中的皮肤区域,以及中值滤波以消除噪声并保持关键边缘信息。

3.1 肤色模型建立与应用
肤色模型是基于人手的肤色特征建立的一种颜色空间表示或概率分布模型,用于识别图像中的肤色像素点。一种常用的肤色模型是在YCbCr色彩空间下构建:

image.png

   其中 R、G、B 分别代表RGB三通道的像素值,Y 是亮度分量,Cb 和 Cr 是色度分量。根据统计分析,在特定范围内的 Cb 和 Cr 值可以很好地表征肤色。例如:

image.png

3.2 中值滤波器的运用
在初步确定肤色区域后,为了去除如光照变化、传感器噪声等导致的非结构噪声,通常采用 中值滤波 方法来平滑处理肤色区域:

image.png

    结合肤色模型与中值滤波的手部检测算法能够有效地从复杂背景中分离出手部区域。实际应用时,还需要考虑光照、视角变化等因素的影响,并可能结合其他高级计算机视觉技术(如机器学习分类器或深度学习模型)进行精确的手部姿态估计和跟踪。

4.部分核心程序
````timescale 1ns / 1ps

module TEST();

reg i_clk;
reg i_rst;
reg [7:0] Isave[0:220000];
integer fids;

integer dat;
integer Pix_begin;
integer Sizes;

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code\test.bmp","rb");
dat = $fread(Isave,fids);
//有效像素起始位置
Pix_begin = {Isave[13], Isave[12], Isave[11], Isave[10]};
//尺寸
Sizes = {Isave[5], Isave[4], Isave[3], Isave[2]};

$fclose(fids);

end

initial
begin
i_clk=1;
i_rst=1;

1000

i_rst=0;
end

always #5 i_clk=~i_clk;

integer jj=0;
reg [7:0]R;
reg [7:0]G;
reg [7:0]B;
always@(posedge i_clk)
begin
R<=Isave[jj+2];//这个datas可以用于输入到FPGA的后期处理
G<=Isave[jj+1];//这个datas可以用于输入到FPGA的后期处理
B<=Isave[jj];//这个datas可以用于输入到FPGA的后期处理
jj<=jj+3;
end

wire [7:0]o_Rmed,o_Gmed,o_Bmed;
wire [7:0]o_Y;// Y
wire [7:0]o_Cr;// Y
wire [7:0]o_Cb;// Y
wire [7:0]o_hand_check;

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_R (R),
.i_G (G),
.i_B (B),
.o_Rmed (o_Rmed),
.o_Gmed (o_Gmed),
.o_Bmed (o_Bmed),
.o_Y (o_Y),// Y
.o_Cr (o_Cr),// Y
.o_Cb (o_Cb),// Y
.o_hand_check (o_hand_check)
);

integer fout1;
initial begin
fout1 = $fopen("hand.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=65536*3+54 & jj>54)
$fwrite(fout1,"%d\n",o_hand_check);
else
$fwrite(fout1,"%d\n",0);
end
endmodule

```

相关文章
|
1天前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
3天前
|
存储 人工智能 自然语言处理
AI 辅助测试(MEAP)(一)(5)
AI 辅助测试(MEAP)(一)
13 0
|
3天前
|
人工智能 IDE Java
AI 辅助测试(MEAP)(一)(4)
AI 辅助测试(MEAP)(一)
9 0
|
3天前
|
存储 人工智能 自然语言处理
AI 辅助测试(MEAP)(一)(3)
AI 辅助测试(MEAP)(一)
8 1
|
3天前
|
XML 人工智能 JSON
AI 辅助测试(MEAP)(一)(2)
AI 辅助测试(MEAP)(一)
11 0
|
3天前
|
机器学习/深度学习 存储 人工智能
AI 辅助测试(MEAP)(一)(1)
AI 辅助测试(MEAP)(一)
13 0
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
9天前
|
数据采集 Python
matlab疲劳驾驶检测项目,Python高级面试framework
matlab疲劳驾驶检测项目,Python高级面试framework
|
11天前
|
算法 计算机视觉 异构计算
基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到&quot;face.txt&quot;。
|
11天前
|
机器学习/深度学习 存储 算法
m基于Yolov2深度学习网络的螺丝检测系统matlab仿真,带GUI界面
MATLAB 2022a中展示了YOLOv2算法的螺丝检测仿真结果,该系统基于深度学习的YOLOv2网络,有效检测和定位图像中的螺丝。YOLOv2通过批标准化、高分辨率分类器等优化实现速度和精度提升。核心代码部分涉及设置训练和测试数据,调整图像大小,加载预训练模型,构建YOLOv2网络并进行训练,最终保存检测器模型。
25 3

热门文章

最新文章