【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱

【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

1 基本定义

高斯加权移动平均滤波算法是一种基于加权平均的滤波方法,它可以有效地去除高斯噪声,同时保留信号的主要特征。该算法的主要思想是通过对信号进行加权平均来消除噪声,其中权值是根据高斯分布计算得到的,越接近中心点的权值越大,越远离中心点的权值越小。这样可以使得噪声的影响减小,同时保留信号的主要特征。 具体来说,高斯加权移动平均滤波算法的步骤如下:

  1. 定义一个滤波窗口,包括当前样本点和其周围的若干个点。
  2. 对窗口内的每个点计算其权值,根据高斯分布计算得到,距离当前样本点越远的点权值越小。
  3. 对窗口内的每个点的数值进行加权平均,得到当前样本点的滤波结果。
  4. 将滤波窗口向前移动一个位置,重复上述步骤,直到所有样本点都被处理完毕。高斯加权移动平均滤波算法的优点是可以有效地去除高斯噪声,同时保留信号的主要特征;缺点是需要选择合适的窗口大小和高斯分布参数,否则可能会影响滤波的效果。

谱相减算法呈现频谱:谱相减算法是一种音频降噪方法,通过将原始频谱与估计的噪声频谱进行相减,得到清晰的音频信号。该算法通常在频域进行操作,对频谱进行减法运算,并对结果进行逆变换以获得时间域的清晰信号。

2 定义和出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublpxv

【MATLAB】语音信号识别与处理:史上最全的 9 种滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublp1v

MATLAB 228 种科研算法及 23 期科研绘图合集

https://pan.baidu.com/s/186kMN0d3dQN2K6KprNhwGQ?pwd=6666

提取码:6666

关于代码有任何疑问,均可关注公众号(Lwcah)后,后台回复关键词:微信号。

获取 up 的个人微信号,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


Lwcah
+关注
目录
打赏
0
0
0
1
45
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
78 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
使用支持向量机算法解决手写体识别问题
使用支持向量机算法解决手写体识别问题
53 2
【坚果识别】果实识别+图像识别系统+Python+计算机课设+人工智能课设+卷积算法
坚果识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实('杏仁', '巴西坚果', '腰果', '椰子', '榛子', '夏威夷果', '山核桃', '松子', '开心果', '核桃')等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。
87 0
告别3D高斯Splatting算法,带神经补偿的频谱剪枝高斯场SUNDAE开源了
【5月更文挑战第26天】SUNDAE,一种结合频谱剪枝和神经补偿的高斯场方法,已开源,解决了3D高斯Splatting的内存消耗问题。SUNDAE通过建模基元间关系并剪枝不必要的元素,降低内存使用,同时用神经网络补偿质量损失。在Mip-NeRF360数据集上,SUNDAE实现26.80 PSNR和145 FPS,内存仅为104MB,优于传统算法。然而,其计算复杂性、参数优化及对其他3D表示方法的适用性仍有待改进。代码开源,期待进一步研究。[论文链接](https://arxiv.org/abs/2405.00676)
73 2
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等