改进粒子群算法求解电力系统经济调度问题(Matlab实现)

简介: 改进粒子群算法求解电力系统经济调度问题(Matlab实现)

1 相关知识点

                                 


这里总结一位博主的目录:梳理如下:


粒子群算法(带约束处理)——Python&Matlab实现


智能优化算法——粒子群算法(Matlab实现)


灰狼算法和粒子群算法比较(附完整Matlab代码)——可应用于电气期刊论文


粒子群算法求解电力系统环境经济调度+微电网调度(风、光、电动车、柴油机、主网)(Python代码实现)


改进的多目标差分进化算法在电力系统环境经济调度中的应用(Python代码实现)【电气期刊论文复现】


风电随机性动态经济调度模型(Python&Matlab代码)


多目标灰太狼算法求解环境经济调度问题(IEEE30)(Matlab实现)


多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】


求解热电联产经济调度问题的改进遗传与粒子群算法


改进粒子群算法的配电网故障定位(Python&Matlab代码实现)


2 部分代码

知识点讲解完毕,下面就是Matlab代码:

clc;
clear;
close all;
%% 经济调度问题
extmodel=CreateModel();
CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)
nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=0;         % 变量下限
VarMax=1;         % 变量上限
%% 粒子群算法相关参数
MaxIt=100;      % 最大迭代次数
nPop=10;        % 总群数量
% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数
%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数
%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% 初始化
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        BestSol=particle(i).Best;
    end
end
BestCost=zeros(MaxIt,1);
%% PSO 主循环
for it=1:MaxIt
    for i=1:nPop
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                BestSol=particle(i).Best;
            end
        end
    end
    BestCost(it)=BestSol.Cost;
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    w=w*wdamp;
end
%% 结果
figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解')


clc;
clear;
close all;
%% 经济调度问题
extmodel=CreateModel();
CostFunction=@(x) MyCostExt(x,extmodel); % 成本函数(目标函数)
nVar=extmodel.nPlant;             % 发电机台数(决策变量的个数)
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=0;         % 变量下限
VarMax=1;         % 变量上限
%% 粒子群算法相关参数
MaxIt=100;      % 最大迭代次数
nPop=10;        % 总群数量
% w=1;            % 惯性权重
% wdamp=0.99;     % 惯性重量阻尼比
% c1=2;           % 个体学习系数
% c2=2;           % 种群学习系数
%% 约束系数
phi1=2.05;
phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w=chi;          % 惯性权重
wdamp=1;        % 惯性重量阻尼比
c1=chi*phi1;    % 个体学习系数
c2=chi*phi2;    % 种群学习系数
%% 飞行速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% 初始化
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Out=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Out=[];
particle=repmat(empty_particle,nPop,1);
BestSol.Cost=inf;
for i=1:nPop
    %=====初始化粒子群位置===============
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
    %=====初始化速度======
    particle(i).Velocity=zeros(VarSize);
    %=====目标函数计算===========
    [particle(i).Cost, particle(i).Out]=CostFunction(particle(i).Position);
    %====更新粒子个体最优=====
    particle(i).Best.Position=particle(i).Position;
    particle(i).Best.Cost=particle(i).Cost;
    particle(i).Best.Out=particle(i).Out;
    %====更新粒子群全局最优========
    if particle(i).Best.Cost<BestSol.Cost
        BestSol=particle(i).Best;
    end
end
BestCost=zeros(MaxIt,1);
%% PSO 主循环
for it=1:MaxIt
    for i=1:nPop
        %============更新速度(跟着公式写就可以啦)===============
        particle(i).Velocity = w*particle(i).Velocity ...
            +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
            +c2*rand(VarSize).*(BestSol.Position-particle(i).Position);
        %============适用速度限制============
        particle(i).Velocity = max(particle(i).Velocity,VelMin);
        particle(i).Velocity = min(particle(i).Velocity,VelMax);
        %============更新位置================
        particle(i).Position = particle(i).Position + particle(i).Velocity;
        IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
        %============适用位置限制============
        particle(i).Position = max(particle(i).Position,VarMin);
        particle(i).Position = min(particle(i).Position,VarMax);
        %============计算目标函数===========
        [particle(i).Cost, particle(i).Out] = CostFunction(particle(i).Position);
        %==========更新个体最优==========
        if particle(i).Cost<particle(i).Best.Cost
            particle(i).Best.Position=particle(i).Position;
            particle(i).Best.Cost=particle(i).Cost;
            particle(i).Best.Out=particle(i).Out;
            %=======更新全局最优============
            if particle(i).Best.Cost<BestSol.Cost
                BestSol=particle(i).Best;
            end
        end
    end
    BestCost(it)=BestSol.Cost;
    disp(['迭代次数' num2str(it) ': 最优解为 = ' num2str(BestCost(it))]);
    w=w*wdamp;
end
%% 结果
figure;
plot(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最优解');

完整代码:评论区回复关键字

3 结果及可视化


相关文章
|
5天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
3月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
3月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
3月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章