【TSP问题】基于改进蜜蜂算法解决旅行商问题(Matlab代码实现)

简介: 【TSP问题】基于改进蜜蜂算法解决旅行商问题(Matlab代码实现)

1 蜜蜂优化算法

蜜蜂算法( Bees Algorithm,BA) 由英国学者 AfshinGhanbarzadeh 和他的研究小组于 2005 年提出。该算法是一种有别于蚁群算法及粒子群算法的全新的群智能优化算法,它通过模拟蜜蜂群体的觅食行为来搜索数学问题的最优解。


在国外,蜜蜂算法目前已广泛应用到包括数据聚类分析、电子设计、函数优化、机械设计、机器人控制、神经网络训练等在内的连续优化问题中,以及包括集装箱装载、特征提取、作业调度、TSP等在内的组合优化问题中。大量研究成果表明,邻域搜索和随机搜索相结合的蜜蜂算法能够很好地解决各类大型组合优化问题与函数优化问题。然而,国内尚没有专门针对蜜蜂算法展开的理论研究和应用研究,仅有部分学者采用蜂群觅食机制的原理来改进遗传算法,称为蜂群遗传算法[1],或蜜蜂进化型遗传算法[2-4]。这些算法在基因进化的过程中增加了模拟蜜蜂觅食机理的步骤,使得遗传算法的全局搜索能力和收敛速度均有所提高,取得了良好的应用效果。


1.1 蜜蜂觅食机制

蜂群能够在大范围地理区域内的不同方向上同时寻找到大量花蜜或花粉。并且,花蜜或花粉质量较好、数量较多、距离较近的食源会吸引大量蜜蜂,而花蜜或花粉质量较差、数量较少、距离较远的食源则只能吸引少量蜜蜂。首先,蜂群会派出一群侦察蜂各自飞到不同的地点,并且在该地点附近随机地搜索花蜜或花粉。各侦察蜂找到食源之后飞回蜂房,并以“圆舞”或“8 字舞” 的舞蹈方式将食源的信息告知其它工蜂。食源的信息主要包括 3 个: 食源的方向、食源的距离、食源食物的质量。蜂群依据这些信息对不同的食源进行评价,进而派出大量采集蜂前往较好的食源,派出少量采集蜂前往较差的食源。这种觅食机制使得蜂群能够快速有效地采集食物。


1.2 蜜蜂算法

蜜蜂算法( Bees Algorithm,BA) 的核心思想是对上述蜂群觅食机制的计算机模拟。运用蜜蜂算法进行优化计算时需要设置以下几个参数: 侦察蜂的数量( n) 、从 n 个采集点中优选出来的较好的搜索区域数目( m,m < n) 、从 m 个搜索区域中优选出来的最好的搜索区域数目( e,e < m) 、e 个最好的搜索区域各自招募的采集蜂数量( nep) 、另外 m - e 个搜索区域各自招募的采集蜂数量( nsp,nsp < nep) 、搜索邻域的大小( ngh) ,以及迭代终止判定准则。


1.3 流程

蜜蜂算法的计算流程如下:

Step 1. 随机初始化 n 只侦察蜂的位置,并计算各自的适应值;


Step 2. 优选 m 只适应值较好的侦察蜂进行邻域( ngh) 搜索,并计算各自适应值;


Step 3. 优选出适应值最好的 e 只侦察蜂,并各自招募 nep 只采集蜂进行邻域搜索,计算每只采集蜂的适应值;


Step 4. 优选出适应值其次的 m - e 只侦察蜂,并各自招募 nsp 只采集蜂进行邻域搜索,计算每只采集蜂的适应值;


Step 5. 分别针对 m 个食源,选出各食源的所有蜜蜂中适应值最好的那只蜜蜂;


Step 6. 剩余 n - m 只侦察蜂在问题的解空间内随机搜索并计算各自的适应值;


Step 7. 转到 Step 2,直至迭代终止判定条件成立。第 3 步和第 4 步招募采集蜂到适应值最好的 e 个食源和适应值其次的 m - e 个食源并进行邻域搜索时,分配到每个食源的采集蜂数量是不同的,可以采用各侦察蜂的适应值作为选择采集蜂的概率。第 5 步在每个食源中仅仅只保留适应值最好的那只蜜蜂来形成下一代蜜蜂群体。在真实蜂群中并没有这种限制,该步骤仅仅是为了减少搜索点的数量。第 6 步中,群体中剩下的 n - m 只侦察蜂将在搜索空间内随机分配,以查找新的可行解。每一次迭代完成后,新的蜜蜂群体将会由两部分组成,一部分是在选定食源邻域内搜索


得到适应值最好的 m 只蜜蜂,另一部分则是负责随机搜索的 n - m 只侦察蜂。

2 TSP问题


3 运行结果

4 Matlab代码实现及详细文章

%% 欢迎关注微信公众号:荔枝科研社
function newB=revers(newbeeA,bee_i_A,map)
n1=unidrnd(map.n); %random selection of the first member's place of the colony - n1
Kn=[1:n1-1 n1+1:map.n]; %preventing n1 from being selected
n2=Kn(randi([1 numel(Kn)])); %random selection of the second member's place of the colony - n2
% reversion process
if n1<n2
    newbeeA(n1:n2)=bee_i_A(n2:-1:n1);
else
    newbeeA(n1:-1:n2)=bee_i_A(n2:n1);
end
newB = newbeeA;
end
%% 回复:基于改进蜜蜂算法解决旅行商问


5 结论

旅行商问题(TSP)是优化领域长期研究的热门问题。用于解决这些问题的最成功的方法是元启发式算法。在本研究中,改进版的 Bee 算法用于求解 GSP。除了经典蜜蜂算法之外,还开发了两种不同的城市选择和搬迁功能。使用这些功能,可以更改多个城市的位置,并且数量不定。这些新功能是在经典蜜蜂算法的延续中加入的,并且只在精英区使用,让这个版块更加精英化。因此,与现有的 Bee 算法相比,通过更少的迭代和搜索获得了更好的结果。


6 写在最后

部分理论引用网络文献,如有侵权请联系删除。

相关文章
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
11天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。

热门文章

最新文章