【图像处理】基于收缩系数的粒子群优化和引力搜索算法的多级图像阈值研究【CPSOGSA】(Matlab代码实现)

简介: 【图像处理】基于收缩系数的粒子群优化和引力搜索算法的多级图像阈值研究【CPSOGSA】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文献


💥1 概述

文献来源:


48a279acddf647d893725f6be068a444.png


图像分割(IS)是图像处理和计算机视觉中必不可少的过程。它将图像划分为许多区域和像素。换句话说,IS简化了图像的特征。多年来,已经提出了许多IS方法,包括边缘检测(ED;Papari & Petkov, 2011)、阈值(Otsu, 1979)等等。然而,由于其简单的设计和鲁棒性,阈值化被广泛使用IS技术(Oliva等人,2014)。


基本上,阈值处理图像的归一化,并根据灰度强度值将其分成更小的片段。实际上,阈值分为两级阈值和多级阈值(MT)。前者通过仅考虑一个阈值 (k) 值将图像分为两类。另一方面,机器翻译需要两个以上的阈值,并将图像的像素分成多个类。


图像分割是图像处理中的关键步骤之一。实际上,它处理根据像素强度将图像划分为不同的类。本工作介绍了一种新的基于收缩系数的粒子群优化和引力搜索算法(CPSOGSA)的图像分割方法。图像的随机样本充当CPSOGSA算法的搜索代理。最佳阈值数是使用 Kapur 熵法确定的。CPSOGSA在图像分割中的有效性和适用性是通过将其应用于USC-SIPI图像数据库中的五个标准图像来实现的,即飞机,摄影师,时钟,莉娜和海盗。采用各种性能指标来研究仿真结果,包括最佳阈值、标准差、MSE(均方误差)、运行时间分析、PSNR(峰值信噪比)、最佳适应度值计算、收敛图、分割图像图和箱形图分析。此外,图像精度是利用SSIM(结构相似性指数度量)和FSIM(特征相似性指数度量)指标进行基准测试的。此外,还利用成对非参数符号Wilcoxon秩和检验对仿真结果进行统计验证。


本工作介绍了一种新的基于收缩系数的粒子群优化和引力搜索算法(CPSOGSA)的图像分割方法。图像的随机样本充当CPSOGSA算法的搜索代理。最佳阈值数是使用 Kapur 熵法确定的。CPSOGSA在图像分割中的有效性和适用性是通过将其应用于USC-SIPI图像数据库中的五个标准图像来实现的。


📚2 运行结果


993874ae91ca4f80ab54438ad62ba833.png

f32db763cb4545f1a67d69a13e428f54.png

f2f7438dc9954eb1a401596a44851439.png

ec3b9618099045caad61d752c66a40f1.png

35bc8a67cbfe4a5ca1ba6cbf419f5e72.png

3c2b0fc1eb7e44ff8fe6bfc6a6edc122.png

4fb6ebda085a445fbdbffc0883e62596.png

00161597314e48b5b111679bd669a84b.png

7e3d7eeabefa4968aa986b510d56f3fe.png


 部分代码:

% Parameter initialization
     I = imread('Aeroplane.tiff');
%    I = imread('Cameraman.tiff');
  level = 5; %% Threshold = level-1 
% 
 N_PAR = level;                          %number of thresholds (number of levels-1) (dimensiones)
 dim = N_PAR;  
% 
 n = 15;                                  % Size of the swarm " no of objects " %%% Default (n = 15)
 Max_Iteration  = 300;                    % Maximum number of "iterations"      %%% Default (Max_Iteration  = 300)
% 
if size(I,3) == 1 %grayscale image
[n_countR, x_valueR] = imhist(I(:,:,1));
end
Nt = size(I,1) * size(I,2); 
% % Lmax indicated color segments 0 - 256
Lmax = 256;   %256 different maximum levels are considered in an image (i.e., 0 to 255)
for i = 1:Lmax
    if size(I,3) == 1  
        %grayscale image
        probR(i) = n_countR(i) / Nt;
    end
end
if size(I,3) == 1
    up = ones(n,dim) * Lmax;
    low = ones(n,dim);
end
 tic
 RunNo  = 1;   
    for k = [ 1 : RunNo ]  
       [CPSOGSA_bestit,CPSOGSA_bestF,CPSOGSA_Fit_bests]= CPSOGSA(I, Lmax, n,Max_Iteration,low,up,dim, level, probR);
       BestSolutions1(k) = CPSOGSA_bestF; 
 disp(['Run # ' , num2str(k),'::' 'Best estimates =',num2str(CPSOGSA_bestit)]);         % CPSOGSA
    end  
% /* Boxplot Analysis */
   figure
   boxplot([BestSolutions1'],{'CPSOGSA'});
   color = [([1 0 0])];
   h = findobj(gca,'Tag','Box'); 
   for j=1:length(h) 
   patch(get(h(j),'XData'),get(h(j),'YData'),color(j));
   end 
   title ('\fontsize{15}\bf Aeroplane (k=2)');
   % %  title ('\fontsize{15}\bf  Cameraman (k=2)');
   xlabel('\fontsize{15}\bf Algorithms');
   ylabel('\fontsize{15}\bf Best Fitness Values');
   box on
% % % 
% /* Graphical Analysis*/
figure
 plot(CPSOGSA_Fit_bests,'DisplayName','CPSOGSA','Color','b','LineStyle','-','LineWidth',3);
 disp( ['Time_CPSOGSA =', num2str(toc)]); 
 title ('\fontsize{15}\bf Aeroplane (k=2)'); % k=2,4,6,8,10
 % %  title ('\fontsize{15}\bf Cameraman (k=2)');
 xlabel('\fontsize{15}\bf Iterations');
 ylabel('\fontsize{15}\bf Fitness values');
 legend('\fontsize{12}\bf CPSOGSA');
 %
 %
 gBestR = sort(CPSOGSA_bestit);
 Iout = imageGRAY(I,gBestR);
 Iout2 = mat2gray(Iout); 
% % Show results on images  
figure
imshow(Iout)
figure
imshow(I)
% % Show results
intensity = gBestR(1:dim-1);  
STDR  = std(CPSOGSA_Fit_bests)              %Standard deviation of fitness values       
MSEV = MSE(I, Iout)                         %Mean Square Error
PSNRV = PSNR(I, Iout)                       %PSNR between original image I and the segmented image Iout
SSIMV = ssim (I, Iout)                      %SSIM Quality Measure
FSIMV = FeatureSIM (I, Iout)                %FSIM Quality Measure
Best_Fitness_Value= CPSOGSA_Fit_bests(k)    %Best fitness


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。



🌈4 Matlab代码及文献

相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于DCT变换的彩色图像双重水印嵌入和提取算法matlab仿真
**算法摘要:** - 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。 - 软件环境:MATLAB 2022a。 - 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。 - 流程概览:两步水印嵌入,每步对应不同图示表示。 - 核心代码未提供。
|
3天前
|
机器学习/深度学习 算法 数据可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
10 0
|
4天前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到"result.txt"以供MATLAB显示图像分割效果。
|
13天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
28天前
|
机器学习/深度学习 算法
【MATLAB】GA_BP神经网络时序预测算法
【MATLAB】GA_BP神经网络时序预测算法
35 8
|
1月前
|
机器学习/深度学习 算法 Serverless
【MATLAB】PSO_BP神经网络回归预测算法(适用光伏发电回归预测等)
【MATLAB】PSO_BP神经网络回归预测算法(适用光伏发电回归预测等)
30 1
|
4天前
|
算法 搜索推荐 数据挖掘
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
12 0
|
5天前
|
数据采集 机器学习/深度学习 存储
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
10 0
|
6天前
|
算法 数据安全/隐私保护 数据格式
基于混沌序列的图像加解密算法matlab仿真,并输出加解密之后的直方图
该内容是一个关于混沌系统理论及其在图像加解密算法中的应用摘要。介绍了使用matlab2022a运行的算法,重点阐述了混沌系统的特性,如确定性、非线性、初值敏感性等,并以Logistic映射为例展示混沌序列生成。图像加解密流程包括预处理、混沌序列生成、数据混淆和扩散,以及密钥管理。提供了部分核心程序,涉及混沌序列用于图像像素的混淆和扩散过程,通过位操作实现加密。
|
6天前
|
数据采集 算法 数据可视化
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
14 1