【图像处理】基于收缩系数的粒子群优化和引力搜索算法的多级图像阈值研究【CPSOGSA】(Matlab代码实现)

简介: 【图像处理】基于收缩系数的粒子群优化和引力搜索算法的多级图像阈值研究【CPSOGSA】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文献


💥1 概述

文献来源:


48a279acddf647d893725f6be068a444.png


图像分割(IS)是图像处理和计算机视觉中必不可少的过程。它将图像划分为许多区域和像素。换句话说,IS简化了图像的特征。多年来,已经提出了许多IS方法,包括边缘检测(ED;Papari & Petkov, 2011)、阈值(Otsu, 1979)等等。然而,由于其简单的设计和鲁棒性,阈值化被广泛使用IS技术(Oliva等人,2014)。


基本上,阈值处理图像的归一化,并根据灰度强度值将其分成更小的片段。实际上,阈值分为两级阈值和多级阈值(MT)。前者通过仅考虑一个阈值 (k) 值将图像分为两类。另一方面,机器翻译需要两个以上的阈值,并将图像的像素分成多个类。


图像分割是图像处理中的关键步骤之一。实际上,它处理根据像素强度将图像划分为不同的类。本工作介绍了一种新的基于收缩系数的粒子群优化和引力搜索算法(CPSOGSA)的图像分割方法。图像的随机样本充当CPSOGSA算法的搜索代理。最佳阈值数是使用 Kapur 熵法确定的。CPSOGSA在图像分割中的有效性和适用性是通过将其应用于USC-SIPI图像数据库中的五个标准图像来实现的,即飞机,摄影师,时钟,莉娜和海盗。采用各种性能指标来研究仿真结果,包括最佳阈值、标准差、MSE(均方误差)、运行时间分析、PSNR(峰值信噪比)、最佳适应度值计算、收敛图、分割图像图和箱形图分析。此外,图像精度是利用SSIM(结构相似性指数度量)和FSIM(特征相似性指数度量)指标进行基准测试的。此外,还利用成对非参数符号Wilcoxon秩和检验对仿真结果进行统计验证。


本工作介绍了一种新的基于收缩系数的粒子群优化和引力搜索算法(CPSOGSA)的图像分割方法。图像的随机样本充当CPSOGSA算法的搜索代理。最佳阈值数是使用 Kapur 熵法确定的。CPSOGSA在图像分割中的有效性和适用性是通过将其应用于USC-SIPI图像数据库中的五个标准图像来实现的。


📚2 运行结果


993874ae91ca4f80ab54438ad62ba833.png

f32db763cb4545f1a67d69a13e428f54.png

f2f7438dc9954eb1a401596a44851439.png

ec3b9618099045caad61d752c66a40f1.png

35bc8a67cbfe4a5ca1ba6cbf419f5e72.png

3c2b0fc1eb7e44ff8fe6bfc6a6edc122.png

4fb6ebda085a445fbdbffc0883e62596.png

00161597314e48b5b111679bd669a84b.png

7e3d7eeabefa4968aa986b510d56f3fe.png


 部分代码:

% Parameter initialization
     I = imread('Aeroplane.tiff');
%    I = imread('Cameraman.tiff');
  level = 5; %% Threshold = level-1 
% 
 N_PAR = level;                          %number of thresholds (number of levels-1) (dimensiones)
 dim = N_PAR;  
% 
 n = 15;                                  % Size of the swarm " no of objects " %%% Default (n = 15)
 Max_Iteration  = 300;                    % Maximum number of "iterations"      %%% Default (Max_Iteration  = 300)
% 
if size(I,3) == 1 %grayscale image
[n_countR, x_valueR] = imhist(I(:,:,1));
end
Nt = size(I,1) * size(I,2); 
% % Lmax indicated color segments 0 - 256
Lmax = 256;   %256 different maximum levels are considered in an image (i.e., 0 to 255)
for i = 1:Lmax
    if size(I,3) == 1  
        %grayscale image
        probR(i) = n_countR(i) / Nt;
    end
end
if size(I,3) == 1
    up = ones(n,dim) * Lmax;
    low = ones(n,dim);
end
 tic
 RunNo  = 1;   
    for k = [ 1 : RunNo ]  
       [CPSOGSA_bestit,CPSOGSA_bestF,CPSOGSA_Fit_bests]= CPSOGSA(I, Lmax, n,Max_Iteration,low,up,dim, level, probR);
       BestSolutions1(k) = CPSOGSA_bestF; 
 disp(['Run # ' , num2str(k),'::' 'Best estimates =',num2str(CPSOGSA_bestit)]);         % CPSOGSA
    end  
% /* Boxplot Analysis */
   figure
   boxplot([BestSolutions1'],{'CPSOGSA'});
   color = [([1 0 0])];
   h = findobj(gca,'Tag','Box'); 
   for j=1:length(h) 
   patch(get(h(j),'XData'),get(h(j),'YData'),color(j));
   end 
   title ('\fontsize{15}\bf Aeroplane (k=2)');
   % %  title ('\fontsize{15}\bf  Cameraman (k=2)');
   xlabel('\fontsize{15}\bf Algorithms');
   ylabel('\fontsize{15}\bf Best Fitness Values');
   box on
% % % 
% /* Graphical Analysis*/
figure
 plot(CPSOGSA_Fit_bests,'DisplayName','CPSOGSA','Color','b','LineStyle','-','LineWidth',3);
 disp( ['Time_CPSOGSA =', num2str(toc)]); 
 title ('\fontsize{15}\bf Aeroplane (k=2)'); % k=2,4,6,8,10
 % %  title ('\fontsize{15}\bf Cameraman (k=2)');
 xlabel('\fontsize{15}\bf Iterations');
 ylabel('\fontsize{15}\bf Fitness values');
 legend('\fontsize{12}\bf CPSOGSA');
 %
 %
 gBestR = sort(CPSOGSA_bestit);
 Iout = imageGRAY(I,gBestR);
 Iout2 = mat2gray(Iout); 
% % Show results on images  
figure
imshow(Iout)
figure
imshow(I)
% % Show results
intensity = gBestR(1:dim-1);  
STDR  = std(CPSOGSA_Fit_bests)              %Standard deviation of fitness values       
MSEV = MSE(I, Iout)                         %Mean Square Error
PSNRV = PSNR(I, Iout)                       %PSNR between original image I and the segmented image Iout
SSIMV = ssim (I, Iout)                      %SSIM Quality Measure
FSIMV = FeatureSIM (I, Iout)                %FSIM Quality Measure
Best_Fitness_Value= CPSOGSA_Fit_bests(k)    %Best fitness


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。



🌈4 Matlab代码及文献

目录
打赏
0
0
0
0
78
分享
相关文章
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
108 16
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
140 15
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

热门文章

最新文章