电动汽车充放电的优化调度(Matlab代码实现)

简介: 电动汽车充放电的优化调度(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章讲解


💥1 概述

摘要:由于用电量的增加,车辆电气化将对电网产生重大影响。对电动汽车(EV)的充电和放电进行智能调度非常重要。然而,调度问题有两大挑战。首先,寻找能够最小化总成本的全局最优调度方案是一个挑战。其次,很难找到一个能够处理大量人口和电动汽车随机到达的分布式调度方案。本文提出了电动汽车充放电的全局最优调度方案和局部最优调度方案。我们首先提出了一个全局调度优化问题,其中对充电功率进行优化,以最小化白天进行充电和放电的所有电动汽车的总成本。全局最优解决方案提供了全局最小的总成本。然而,全局最优调度方案是不切实际的,因为它需要有关未来基本负载和到达时间的信息,以及将在一天的未来时间到达的电动汽车的充电周期。为了开发一个实用的调度方案,我们然后制定了一个局部调度优化问题,该问题旨在最小化本地组中当前正在进行的EV组中的EV的总成本。局部最优调度方案不仅可扩展到大型电动汽车群体,而且对动态电动汽车到达具有弹性。通过仿真,我们证明了与全局最优调度方案相比,局部最优调度方案可以获得接近的性能。


在全局最优调度方案中,由于我们假设我们具有关于一天内的电动汽车和基本负载的信息的全局知识,因此我们可以通过仅解决一次全局调度优化问题(5)来找到每个间隔的最优充电功率。在局部最优调度方案中,我们不知道未来负载和未来EV的信息。我们提出了一种局部最优调度方案,通过使用滑动窗口机制来找到本地电动汽车在下一个间隔内的最优充电功率


在局部最优调度方案中,我们基于组进行调度优化。一组EV包括位于一个位置或多个附近位置的EV。例如,在停车场进行充电和放电的电动汽车可以被分类为一组,而住宅车库中的电动汽车可被分类为另一组。每个组都有一个本地控制器(LC)。局部最优调度方案中的通信和控制如图2所示。本地控制器与位于公用事业公司的中央控制器和本地站点的充电站建立通信连接。本地控制器从中央控制器接收当天的预测负荷。本地控制器与每个充电站实时通信以收集EV信息,基于该信息执行调度优化,然后指示每个本地EV以最佳充电功率对电池进行充电或放电。


d2ccad7cf27b6876df649113b0491fdb.png


安装CVX包:


然后:也是代码前的准备


3b794e7dd3cfd3f7de2806ebddc8d543.png


本文是一种最优调度算法,以最大限度地降低电动汽车充放电的总成本。


📚2 运行结果


69740cb8896eadf42745f634889e7193.png

d50fe9a81e0c797a659eb9e3696615ff.png

178cae93b8f31f0a4b570c77f4f6764f.png

937ca323711e1d30612790f7fd54b465.png

f19fe45acfafaa5120cf0e8b3ca8e623.png

1285f252d7efa2a3ddbfc519219b92f3.png

80cc530df182c44507613b2a59c69ed9.png

2a5bd36e948e948bd8cadeaa2f579ac2.png

90304501997eda3c6ff342c0aace8054.png



模拟大规模电动车充电行为(Matlab实现)

电动汽车对系统运行的影响(Matlab实现)

基于蒙特卡洛法的规模化电动汽车充电负荷预测(Python&Matlab实现)

基于电动汽车的带时间窗的路径优化(Python&Matlab代码实现)

(Matlab实现)基于蒙特卡诺和拉格朗日乘子法的电动车调度【有序、无序充放电】


部分代码:

%===简单乘法计算=====
% k_con=alfa/(omega^theta*(theta+1));
%=====充电间隔时间======
tau=1; % 小时内
%=====充电间隔数========
num_slot=length(L_b_mic);
%====(2)基本价格=======
price_basic=zeros(num_slot,1); % 基于基本负荷的价格
for i=1:num_slot
price_basic(i)=k_0+k_1* L_b_mic(i);
end
fprintf('价格,最低价格=%g,最高价格=%g.\n',min(price_basic), max(price_basic));
%% 电动汽车EV容量
Cap_battery_org=16; % KWh
gamma=0.9; % 充电完成时电池的百分比
Cap_battery=gamma*Cap_battery_org;
%% ==最大充电率===
P_max=5; % KW
%% 电动汽车数量
num_EV=200;
% 仅给电池充电的电动汽车的百分比
P_Chg=0;
% CHG EVs数量
num_CHG_EV=round(P_Chg*num_EV); % CHG EV 将位于 EV 信息矩阵的前面部分。
% V2G EVs数量
num_V2G_EV=num_EV-num_CHG_EV;
%% 电动汽车充电模式
% 30% 的电动汽车在间隔 1 之前连接到充电站,其余的均匀分布
%EV矩阵:1) 到达时间,2) 出发时间,3) 初始能量,4) 充电周期,5) 最小充电时间%
% EV_info=zeros(num_EV,3);
%===间隔1前接入站的EVS百分比====
% Per_EV=0.1;
%=====其他车辆到达时间均匀分布在[ 1,20 ]之间======
% for i=1:num_EV
% temp_00=rand;
% if temp_00<=Per_EV
% T_arrival(i,1)=1;
% else
% T_arrival(i,1)=round(1 + (20-1).*rand);
% end
% end
%
%=====充电时间均匀分布在 [4, 12] 小时之间======
% T_charging= round(4 + (12-4).*rand(num_EV,1));
% T_charging=-1*sort(-1*T_charging);
%
% % the departure time
% for i=1:num_EV
% T_departure(i,1)=min(24, T_arrival(i,1)+T_charging(i,1));
% end
%====初始电量均匀分布在电池容量的[0 0.8]之间======
% Ini_percentage=0+ (0.8-0).*rand(num_EV,1);
% % fill the EV_info
% EV_info(:,1)=T_arrival;
% EV_info(:,2)=T_departure;
% EV_info(:,3)=Cap_battery_org*Ini_percentage;
%
% for i=1:num_EV
% EV_info(i,4)=EV_info(i,2)-EV_info(i,1)+1; % 充电周期
% EV_info(i,5)=EV_info(i,3)/P_max; % 最小充电时间
% if EV_info(i,4) < EV_info(i,5)
% fprintf('EV %g 充电时间不合理.\n',i);
% end
% end
%
% % save and load EV_info
% save EV_info.txt EV_info -ascii;
load EV_info.txt;
EV_info=EV_info(1:num_EV,:);
%% 电动汽车与充电间隔的关系
F=zeros(num_EV, num_slot);
G=ones(num_EV, num_slot);
for i=1:num_EV
for j=EV_info(i,1):EV_info(i,2)
F(i,j)=1;
G(i,j)=0;
end
end
F1=reshape(F',1,[]);
% F=ones(num_EV, num_slot);
%% 绘制基本负荷
xx_1=1:num_slot;
figure;
yy_1(:,1)=L_b_mic;
yy_1(:,2)=P_L_b_mic;
plot(xx_1,yy_1);
ylabel('负荷[KW]');
xlabel('小时数');
legend('实际负荷量','预测负荷量');
%% 使用CVX工具的V2G全局最优方案
%(1)等式约束: Ax=b
% (2)优化变量x=[z1, z2, ..., z_24, x11, x12, ...., x_100,24]'
num_OptVar=1*num_slot+num_slot*num_EV;
b_a=L_b_mic; %第一个等式约束的矩阵
A1_a=zeros(num_slot, num_OptVar-1*num_slot);
A1=[eye(num_slot) A1_a];
A2_a=zeros(num_slot, num_OptVar-1*num_slot);
s_temp=0;
for i=1:num_slot
for j=1:num_EV
A2_a(i, (j-1)*num_slot+i)=F(j,i);
% fprintf('Assign F(%g,%g)=%g, to A2_a(%g, %g).\n',j,i,F(j,i),i,(j-1)*num_slot+1);
s_temp=s_temp+F(j,i);
end
end
A2_b=zeros(num_slot, num_slot);
A2=[A2_b A2_a];
A_a=A1-A2; % 第一个等式约束的矩阵
clear A1 A2 A1_a A2_a A2_b;
%======第一个等式约束的矩阵=====
B_1=zeros(num_EV, num_OptVar-1*num_slot);
for i=1:num_EV
B_1(i,(i-1)*num_slot+1:(i-1)*num_slot+num_slot)=F(i,:);
end
temp_1=zeros(num_EV, num_slot);
B1=[temp_1 B_1]; % 第二等式约束的矩阵
b_b=(Cap_battery/tau)*ones(num_EV,1)-EV_info(:,3);% 第二等式约束的矩阵
clear B_1 temp_1;
%合并等式矩阵
% Eq_left=[A_a' B1']';
% Eq_right=[b_a' b_b']';
%% ======等式约束=====
Eq_L=A_a;
Eq_R=b_a;
clear A_a b_a;
%% ======不等式约束=====
% ====1)第一个不等式约束=====
In_1=zeros(num_EV*num_slot, num_OptVar);
for i=1:num_slot
for j=1:num_EV
In_1((i-1)*num_EV+j,num_slot+(j-1)*num_slot+1:num_slot+(j-1)*num_slot+i)=F(j,1:i);
% fprintf('set row %g, col %g:%g by using F(%g,1:%g).\n',(i-1)*num_EV+j,num_slot+(j-1)*num_slot+1,num_slot+(j-1)*num_slot+i,j,i);
end
end
In_1=-1*In_1; % 第一个不等式,左边
In_b1=zeros(num_EV*num_slot, 1); % 第一个不等式,右边, [EV1_slot1, EV2_slot1, ..., EV1_slot2, EV2_slot2,...]'
for i=1:num_slot
In_b1( (i-1)*num_EV+1:(i-1)*num_EV+num_EV, 1 )= (1/tau)*EV_info(1:num_EV,3);
end
%=====2)第二个不等式约束=====
In_2=-1*In_1; %第二个不等式约束,左边
In_b2=zeros(num_EV*num_slot, 1); % 第二个不等式约束,右边, [EV1_slot1, EV2_slot1, ..., EV1_slot2, EV2_slot2,...]'
temp_b2=Cap_battery_org - EV_info(1:num_EV,3);
for i=1:num_slot
In_b2( (i-1)*num_EV+1:(i-1)*num_EV+num_EV, 1 )= (1/tau)*temp_b2;


🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。


🌈4 Matlab代码、数据、文章讲解

相关文章
|
3月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
存储 算法 调度
基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真
通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)